Most Download articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

    In last 2 years
    Please wait a minute...
    For Selected: Toggle Thumbnails
    A Topology Optimized Design Method for High-performance Structures with Fluid-thermal-mechanics Coupling
    LI Rongqi, YAN Tao, HE Zhicheng, MI Dong, JIANG Chao, ZHENG Jing
    China Mechanical Engineering    2024, 35 (03): 487-497.   DOI: 10.3969/j.issn.1004-132X.2024.03.011
    Abstract1548)      PDF(pc) (5000KB)(869)       Save
    The rapid advancement of topology optimization and additive manufacturing technology provided efficient methods for designing and manufacturing high-performance complex equipment. However, current topology optimization techniques for high-performance structures only considered the design of thermal-mechanics coupling or fluid-thermal coupling, and were mostly limited to simple structures. The design under the combined effects of fluid-thermal-mechanics fields was not considered, which restricted the enhancement of structural performance. This paper tackled the challenge of designing high-performance complex structures under multi-physics fields, encompassing fluid-thermal-mechanics interactions. A topology optimization method was proposed to enhance the ability to withstand temperature of intricate structures. Firstly, the governing equations of flow field, temperature field and structural displacement field were introduced to provide a unified description of the fluid-solid materials within the computational domain. Secondly, the topology optimization model was formulated with fluid-thermal-mechanics coupling. The objective function was set to minimize the average temperature, while flow energy dissipation and structural compliance served as constraint functions. Sensitivity analysis of design variables was carried out by using a combination of the variational method and Lagrangian function. Finally, the established topology optimization model was applied to the structural design of a turbine, resulting in a structure suitable for additive manufacturing with excellent heat dissipation performance and well-balanced flow channel distribution.
    Reference | Related Articles | Metrics | Comments0
    Study on Influences of Ni Content, Nitriding Hardening Depth, and Shot Peening on Bending Fatigue Performance of 42CrMo Gears
    WU Zhongrui, CHEN Difa, WU Jizhan, YANG Yudian, LIU Huaiju
    China Mechanical Engineering    2024, 35 (03): 394-404.   DOI: 10.3969/j.issn.1004-132X.2024.03.002
    Abstract783)      PDF(pc) (9652KB)(769)       Save
     Single tooth bending fatigue tests were conducted on 42CrMo gears with different combinations of Ni content, nitriding hardening depth, and shot peening. The effectiveness of different process combinations on improving the bending fatigue limit of gears was investigated, providing process guidance for gear fatigue resistance manufacturing. Additionally, the contribution of surface hardness, nitriding hardening depth, surface residual stress, and Ni content to the bending fatigue limit of gears with different process combinations was analyzed using the random forest algorithm. A multiple regression model considering surface hardness, nitriding hardening depth, surface residual stress, and Ni content was established to predict the bending fatigue limit of gears. Comparing the predicted values with experimental values, the maximum error is controlled within 7.80%, providing a theoretical basis for the rapid and low-cost assessment of gear bending fatigue limit in engineering applications.
    Reference | Related Articles | Metrics | Comments0
    Inverse Kinematics Solution of Robots Based on IQPSO Algorithm
    CHEN Zhuofan, ZHOU Kun, QIN Feifei, WANG Binrui
    China Mechanical Engineering    2024, 35 (02): 293-304.   DOI: 10.3969/j.issn.1004-132X.2024.02.014
    Abstract1082)      PDF(pc) (9273KB)(561)       Save
    Aiming at the problems of singular pose, non-unique solution and low solution precision in the inverse kinematics solution processes of general robots, an improved quantum particle swarm optimization algorithm was proposed. Firstly, the robot kinematics model was established by using the D-H parameter method, and the minimum pose errors at the end of the manipulators were the main optimization goal, and the constraints of the minimum joint angle changes before and after the movement and the smooth and continuous stroke were added, and the objective function was designed. Secondly, an IQPSO algorithm was designed by using the Levy flight strategy to improve the particle update method, nonlinear dynamic adjust the shrinkage and expansion factors, and using the variable weight method to calculate the optimal average position. Then, the simulation and comparison experiments of three algorithms(IQPSO,APSO,QPSO) were carried out by simulating two different solutions of single point pose and continuous trajectory. The results show that the IQPSO algorithm has the advantages of fast convergence speed and high solution accuracy; finally, the IQPSO algorithm was used in the body of the robot arm for physical verification. The results show that the trajectory composed of interpolation points obtained by the IQPSO algorithm is continuous and smooth, which further proves the stability and feasibility of the algorithm in practical motion control.
    Reference | Related Articles | Metrics | Comments0
    Study on Force Model and Surface Integrity of Cylindrical Grinding 18CrNiMo7-6 Steels
    WANG Dong, CHEN Lei, ZHANG Zhipeng
    China Mechanical Engineering    2024, 35 (03): 381-393.   DOI: 10.3969/j.issn.1004-132X.2024.03.001
    Abstract780)      PDF(pc) (8185KB)(533)       Save
     In order to accurately and effectively control the influences of grinding parameters on grinding force and surface integrity, a three-stage grinding force theoretical model was established based on the plastic deformation, indentation theory and shear strain effect between abrasive particles and materials by analytical method. The brown corundum grinding wheels were selected for grinding experiments to explore the effects of grinding parameters on grinding force and the effects of grinding parameters and grinding force on surface integrity. The optimal processing parameters for cylindrical grinding were obtained through orthogonal experiments of cylindrical transverse grinding. The results show that the average prediction errors of normal and tangential grinding forces in the cylindrical grinding force model are 5.56% and 7.08%, respectively. The radial feed speed of the grinding wheel has the greatest impact on grinding force, followed by grinding width, and the influences of workpiece speed and grinding wheel particle size are relatively small. The radial feed speed and grinding width of the grinding wheel have a significant impact on residual stress, and the particle size of the grinding wheel has the greatest impact on surface roughness. As the grinding force increases, the surface roughness value continuously increases, and the residual stress firstly decreases and then increases. The maximum residual stress value along the depth direction firstly increases and then decreases. Within the parameters taken in the experiments, the distribution range of residual stress is basically 20~40 μm. The optimal combination of processing parameters is a radial feed speed of 0.15 mm/min for the grinding wheel, a workpiece speed of 120 r/min, a grinding width of 10 mm, and a grinding wheel particle size of 80.
    Reference | Related Articles | Metrics | Comments0
    Research Status and Development Trends of Large Wind Turbine Main Shaft Sliding Bearings
    ZHU Caichao1, ZHANG Ronghua1, SONG Chaoshen1, TAN Jianjun1, YANG Liang2
    China Mechanical Engineering    2024, 35 (10): 1711-1721.   DOI: 10.3969/j.issn.1004-132X.2024.10.001
    Abstract1208)      PDF(pc) (4422KB)(524)       Save
    The pace of large wind turbine units was accelerating, and the reliability of core components was increasingly important for wind turbine operations. Sliding bearings had the advantages of high load capacity, long life, easy maintenance, scalability and small size, and they had advantages and great potential for the reliable replacement of wind turbine main bearings key components produced at home. The problems of main shaft rolling bearings in high-power wind turbines and the advantages of using sliding bearings on the main shaft were analyzed herein. The technical methods and application status of wind turbine main shaft sliding bearing design, materials, lubrication, and experimental verification were present in detail, and the existing problems of high-power wind turbine main shaft sliding bearings and future development trends were summarized. It is expected to provide reference for the digital design and industrial development of high-power wind turbine main bearings.
    Reference | Related Articles | Metrics | Comments0
    Research on Energy Transfer Model and Optimisation of Operating Parameters of Vibratory Rollers
    HUI Jizhuang, LUO Wei, ZHANG Zeyu, ZHANG Jun, WANG Jie
    China Mechanical Engineering    2024, 35 (03): 541-547.   DOI: 10.3969/j.issn.1004-132X.2024.03.016
    Abstract609)      PDF(pc) (1996KB)(386)       Save
     In order to improve the compaction quality of vibratory rollers, the energy transfer model of vibratory rollers and the optimisation of operating parameters were studied. Firstly, the system vibration dynamics model of “wheel-compacted material” was established based on the U-K equation, and the energy transfer model of vibratory roller was proposed in combination with energy conservation.Then, the vibration frequency and compaction speed were taken as the optimal working parameters to construct the optimisation model of road compaction quality.Finally, the feasibility and effectiveness of the proposed method were proved through case verification. The results show that: the ratio between the working frequency and the intrinsic frequency of the compacted material is kept within the range of 2~2 to avoid the effect of resonance.The initial stage of low-speed rolling, and after the material properties were stabilised, the rolling speed may be increased to ensure efficient compaction, which results in the vibration frequency in the range of 21.8~27 Hz and the compaction speed in the range of 2.36~2.91 km/s, to achieve the optimal compaction effectiveness. The proposed energy transfer model and operation parameter optimisation model lay a foundation for guaranteeing the compaction quality of vibratory rollers and provide a reference for improving the compaction quality and efficiency of vibratory rollers.
    Reference | Related Articles | Metrics | Comments0
    Visual Detection of Subsurface Corrosions in Ferromagnetic Metal Plates Using Pulsed Eddy Current Based on Dual-sensor Differential Mechanism
    WANG Jin1, LI Yong1, SU Bingjie1, GAO Wenlong1, XIANG Yi1, 2, LIU Zhengshuai1, CHEN Zhenmao1
    China Mechanical Engineering    2025, 36 (03): 381-390.   DOI: 10.3969/j.issn.1004-132X.2025.03.001
    Abstract663)      PDF(pc) (17686KB)(368)       Save
    A pulse eddy current visual detection method was proposed based on a dual-sensor differential mechanism for subsurface corrosions in ferromagnetic metal plates. In this method, a dual-sensor differential probe was used to pick up the pulsed eddy current testing signals, and the slope of the logarithmic curve along the falling edge of the testing signals and the peak value of the normalized differential signals were extracted as signal features, which were used for visual detection of defects of different sizes. Through simulation and experimental research, the correlation laws between the proposed signal features and the sizes of defects were established, and it is verified that the dual-sensor differential probe has the advantages of reducing noise interference and improving the detection sensitivity compared with traditional single-sensor probes. In addition, a method was proposed to fuse the two signal features, and the results indicate that the defect images using fused signal features have a higher image signal-to-noise ratio. The research method proposed herein provides an effective and reliable solution for the visual detection of subsurface corrosions in ferromagnetic metal plates.
    Reference | Related Articles | Metrics | Comments0
    Design of Lane Keeping Assist Systems Based on Improved Preview Control Model
    LIANG Yongbin, FU Guang, LIN Zhigui, HE Zhicheng, ZHANG Jialuo, CHEN Tao
    China Mechanical Engineering    2024, 35 (03): 548-558.   DOI: 10.3969/j.issn.1004-132X.2024.03.017
    Abstract724)      PDF(pc) (8767KB)(364)       Save
    To address the issues of low robustness, consistency in vehicle manufacturing, and severe road surface interference in LKA system of torque control, a LKA system was designed based on angle control by using neural network technology, Autofix algorithm, and preview feedback control theory, through expected trajectory decision-making and following PID control algorithm. A hardware-in-the-loop simulation test platform was built to verify the effectiveness and accuracy of the design of the angle based lane protection systems through virtual simulation based on Carsim/Veristand/ MATLAB. Based on GB/T 39323—2020, CN-CAP—2021, Euro-NCAP—2022 and the testing requirements of the car retention systems based on real-road commissioning and user concern scenarios, the simulation and comparison with real-road scenarios show that the angle-controlled LKA system has better lane keeping capability, stability, adaptability and robustness than that of the torque-controlled LKA system in the same usage scenarios.
    Reference | Related Articles | Metrics | Comments0
    Review on Management at Mechanical Design and Manufacturing Discipline of National Natural Science Foundation of China in 2023
    YE Xin, HUANG Zhiquan, ZHANG Junhui,
    China Mechanical Engineering    2024, 35 (04): 571-579.   DOI: 10.3969/j.issn.1004-132X.2024.04.001
    Abstract701)      PDF(pc) (8141KB)(359)       Save
     The applications, evaluations, and funding of several types of projects that were classified into the talent and exploratory funding categories at mechanical design and manufacturing discipline (division Ⅱ of engineering science) of the National Natural Science Foundation of China in 2023, as well as the research progresses and findings of the executing and finished projects were reviewed. Specific measures of mechanical design and manufacturing discipline were illustrated, such as the reform of scientific fund, talent cultivation, and future research. Finally, a short prospect of the work in 2024 was introduced.
    Reference | Related Articles | Metrics | Comments0
    Design of Experimental Device for Sealing Performance of Hydraulic Pump Plungers
    LUO Longjun, HE Xiaofeng, LIU Xun, ZHANG Qiaxuan, HUANG Hewen
    China Mechanical Engineering    2024, 35 (02): 229-235.   DOI: 10.3969/j.issn.1004-132X.2024.02.006
    Abstract527)      PDF(pc) (4818KB)(356)       Save
    In order to solve the sealing reliability and selective design problems of the plungers and cylinder liners of oil-water separated plunger pump, a plunger sealing performance experimental device and the loading system were developed to simulate the actual operating conditions of the hydraulic plunger pump, and the dynamic balance design of the experimental device was carried out. The simulation model of the loading system for the experimental device was established, and then a reasonable loading method was determined through simulation and comparison. The loading test and stability test of the experimental device show that the operation of the experimental device is stable and reliable, and the volumetric efficiency is within a reasonable range.
    Reference | Related Articles | Metrics | Comments0
    Analysis for Aero -elastic Characteristics of Prop-Rotor in Hover with a Swept Tip
    HUANG Wei, CHI Cheng
    China Mechanical Engineering    2024, 35 (02): 191-200.   DOI: 10.3969/j.issn.1004-132X.2024.02.001
    Abstract594)      PDF(pc) (9640KB)(347)       Save
    The issues of significant stress and strain concentration within the prop-rotor blades caused by large negative twist and swept tips were addressed herein. By 3D structural dynamics model, rotor aerodynamics model, and rotor trim methods, a comprehensive model of composite prop-rotor was developed, and the aeroelastic loads of composite prop-rotor were analyzed, and the accuracy of the synthesis model was validated through hover experiments. The analysis of aero-elastic characteristics was performed for rotor blades with zero twist, large negative twist, and large negative twist with swept tips. The results indicate that the large negative twist enlarges the stress concentration area, while the swept tip makes the stress concentration at the swept transition area larger and the degree of concentration worsens. 
    Reference | Related Articles | Metrics | Comments0
    Integrated Casting Triangular Beam Lightweight Improving with Multi-performance Constraints of Body Systems
    SU Yonglei, ZHANG Zhifei
    China Mechanical Engineering    2024, 35 (04): 691-699.   DOI: 10.3969/j.issn.1004-132X.2024.04.012
    Abstract750)      PDF(pc) (6363KB)(346)       Save
     An optimization method of integrated casting structures was constructed systematically, and based on the super-element model of body system, body casting part lightweight improving with multi-performance constraints was realized. Firstly, complex body systems were reduced, the sub-system division principle and method were proposed for continuous body structure. Super-element reduction of the sub-system was conducted to ensure analysis accuracy and improve calculation efficiency, laying the foundation for rapid optimization. Secondly, performances of casting structures and body systems were considered simultaneously, the compromise programming methods were used to normalize static and dynamic sub-targets and construct the comprehensive objective function, weight coefficients of sub-targets were obtained by analytic hierarchy process(AHP), and then multi-model topology optimization was carried out to determine position distribution of reinforcements. Furthermore, designability and manufacturability were considered simultaneously, parametric definition of variable thickness drawing surface of casting structure was carried out, manufacturing constraints were applied during optimization processes, and then thickness parameter design was completed based on combined surrogate model. The results show that, under the premise of ensuring the analysis accuracy, reduced body system models improve computing efficiency greatly, and save 97.3% of computing resources. Casting triangular beam lightweight may be achieved while improving related performance by conducting structure optimization, which indicates correctness and practicability of the proposed method. 
    Reference | Related Articles | Metrics | Comments0
    Research on Two-level Fusion Strategy of Unmanned Driving Perception Information Target-decision under Tunnel Environments
    WANG Maosen, BAO Jiusheng, XIE Houkang, LIU Tonggang, YIN Yan, ZHANG Quanli
    China Mechanical Engineering    2024, 35 (03): 427-437.   DOI: 10.3969/j.issn.1004-132X.2024.03.005
    Abstract706)      PDF(pc) (4400KB)(319)       Save
    Based on the special driving environment in the tunnel and the perception requirements of unmanned driving, appropriate sensors and hardware were chosen to build a test vehicle and a perception system of multi-sensor fusion of millimeter-wave radar and camera. A two-level information fusion algorithm of “target-decision” was proposed based on YOLOv4 target-level information fusion algorithm and improved D-S evidence theory. Finally, a verification test of perception information two-level fusion was carried out in the urban road tunnel environments. The results show that in the tunnel environments, compared with the single camera or the millimeter-wave radar sensing results, the target-level fusion result based on the association of the camera and the millimeter-wave radar sensor to perceive the ROI area may improve the recognition accuracy by 9.51%, making up for the shortcomings of a single sensor in the tunnel environment perception technology. Based on the target-level fusion perception results, using the improved D-S evidence theory algorithm to perform decision-level fusion, compared with the single target-level fusion results, the false detection rate is reduced by 3.61%, which significantly improves detection accuracy. By adopting the multi-sensor sensing information target-decision-making two-level fusion strategy, it may meet the reliable sensing requirements of unmanned vehicles in the special tunnel environments, and provide theoretical and technical support for promoting the applications of unmanned controlled technology.
    Reference | Related Articles | Metrics | Comments0
    Contact Fatigue Performance of PEEK under Oil-injected Lubrication
    WU Ruo, WEI Peitang, XIE Huaijie, BIAN Jiang, LU Zehua, LIU Huaiju
    China Mechanical Engineering    2024, 35 (02): 221-228.   DOI: 10.3969/j.issn.1004-132X.2024.02.005
    Abstract637)      PDF(pc) (12856KB)(292)       Save
    PEEK was a high-strength, heat-resistant engineering polymer, but the absence of basic data of PEEK contact fatigue restricted the reliable and long-life applications under heavy-duty conditions. PEEK rolling contact fatigue tests and gear contact fatigue tests under oil injection lubrication were conducted herein, and the S-N curves were obtained. It is found that the PEEK rolling contact fatigue limit is 14% higher than gear contact fatigue limit, and the rolling contact fatigue life of rollers under the contact pressure of 135 MPa is 58% higher than gear fatigue life. And then, the conversion formula of PEEK roller-gear contact fatigue life was further proposed.
    Reference | Related Articles | Metrics | Comments0
    Comprehensive Thickness Control Technology of 1180 MPa Grade Ultra-high Strength Steels in Cold Tandem Rolling
    ZHANG Wenjun, WANG Wenqi, ZHANG Xiaodong, LIN Wei, ZHANG Yandong, BAI Zhenhua,
    China Mechanical Engineering    2024, 35 (02): 347-353,370.   DOI: 10.3969/j.issn.1004-132X.2024.02.019
    Abstract667)      PDF(pc) (5696KB)(281)       Save
    To resolve the issues of thickness variation and thickness deviation at head and tail for ultra-high strength steels in continuous cold tandem rolling, a thickness deviation prediction model and a roll gap adjustment estimation model were established based on the metal mass flow equation firstly. In addition, a thickness control system was exploited, and optimal roll gap adjustment model was established. Finally, an optimization model for rolling speed and tension in the head and tail rolling processes of the strip steels was built. The first stand of continues cold tandem rolling unit was taken as the technical application objects to test the two typical ultra-high strength steels. The results demonstrate that the length of thickness deviation for the ultra-high strength steel AR4146E1 and DU6220A1 decreased from 70.3 m and 36.89 m to 16.85 m and 16.33 m respectively.
    Reference | Related Articles | Metrics | Comments0
    Intelligent Layout for Pipeline Supports of Nuclear Power Plant under Complex Load
    SUN Yuxiang, CHEN Li, LONG Bo, WANG Yanping, LIU Shihua, JIA Kun
    China Mechanical Engineering    2024, 35 (02): 317-323,336.   DOI: 10.3969/j.issn.1004-132X.2024.02.016
    Abstract685)      PDF(pc) (5695KB)(279)       Save
     Nowadays, the arrangement of pipeline supports for nuclear power plants is achieved by iterative manual calculations, which had many drawbacks such as high labour intensity, long design cycles, and high costs. An intelligent layout method for three-dimensional nuclear power pipeline supports was proposed based on particle swarm optimization-genetic algorithm hybrid algorithm and finite element mechanics analysis. The examples of intelligent arrangement of pipeline supports for typical nuclear pipelines show that the proposed method may automatically arrange multiple supports of different types in the global space of the pipeline to meet the Design and Construction Rules for Mechanical Equipment of Nuclear Island of Nuclear Power Plants, and greatly reduce workload.
    Reference | Related Articles | Metrics | Comments0
    Optimal Design of Slip Oil Pump Impeller Structures Based on NSGA-Ⅱ
    SUN Yongguo, JIN Xin, XUE Dong, SHAN Jianping, SHI Xiaochun
    China Mechanical Engineering    2024, 35 (03): 559-569.   DOI: 10.3969/j.issn.1004-132X.2024.03.018
    Abstract710)      PDF(pc) (6468KB)(278)       Save
    Slip oil pumps often needed to operate stably at high altitude and under low pressure conditions, which often led to cause problems such as insufficient oil supply and reduced efficiency. In order to get the best performance of the pump to meet the design requirements, this paper taken the impeller of a helicopter oil pump as the research object and to optimise the structure. The efficiency and lift of two typical working conditions at high altitude were selected as the optimisation targets, and the NSGA-Ⅱ was used to optimise the geometric parameters of the oil pump impellers, and the efficiency and lift of the oil pump before and after the optimisation were compared and analysed. CFD fluid simulation and experimental methods were used to verify the optimisation results. The results show that: the selected optimization parameters have a greater impact on the performance of the slip oil pumps, near the optimized slip oil pump vane positions the flow is more smooth, the high and low pressure areas of the excessively smooth, the energy loss is smaller, and the possibility of cavitation is reduced. The optimized slip oil pump design point lift increases 2.6 m, the efficiency increases 2.86%.
    Reference | Related Articles | Metrics | Comments0
    Lubrication Characteristics of Gear End Face Friction Pairs of Aviation High-speed Gear Pumps
    CHEN Yuan1, XIONG Dianfeng1, LI Yuntang1, GAO Yongcao2, LI Chuancang2, WANG Bingqing1, JIN Jie1
    China Mechanical Engineering    2024, 35 (07): 1178-1187.   DOI: 10.3969/j.issn.1004-132X.2024.07.005
    Abstract639)      PDF(pc) (9034KB)(278)       Save
    Aiming at the serious wear problems of gear end face friction pairs of aviation external gear pumps, a new compound texture combining Tesla valve groove type and elliptical shape was opened on the gear end faces to improve lubrication performance. Based on hydrodynamic lubrication theory and finite element simulation calculation method, a theoretical analysis model of gear textured end face friction pair lubrication was established. Pressure distribution and velocity distribution of fluid within the end face liquid films were simulated and analyzed under conditions with and without texture, and the effects of operating and structural parameters on the openness and sealing performance of gear end faces were studied. The results show that the hydrodynamic pressure generated by the texture may make the gear end face friction pairs run non-contact, which has a positive effect on reducing friction and increasing efficiency. With the comprehensive consideration of the openness and leakage control performance of gear end face friction pairs, groove depth is as 7~9 μm, height difference is as 5~6 μm, inclination angle is as 0°~10°, and shape factor is as 0.4~0.5 are the optimal structural parameters for the texture structure.
    Reference | Related Articles | Metrics | Comments0
    Vibration and Lubrication Characteristics of Railway Vehicle Axle Box Bearings under Wheel-rail Excitation
    MA Qiaoying, YANG Shaopu, LIU Yongqiang,
    China Mechanical Engineering    2024, 35 (04): 580-590.   DOI: 10.3969/j.issn.1004-132X.2024.04.002
    Abstract651)      PDF(pc) (12680KB)(275)       Save
    An axle box bearings coupled with a railway vehicle model was developed based on Hertz contact and elastohydrodynamic lubrication theory. The effects of wheel-rail excitations on the vibration and oil film stiffness characteristics of axle box bearings were investigated. MATLAB/Simulink and UM were used to establish the bearing dynamic model and the railway vehicle model, respectively. The coupling relationship between the two was realized through the interaction force. The typical fault forms of bearings and wheelsets were simulated, and the impacts of these faults on bearing vibration and lubrication characteristics were analyzed in detail. The results show that lubrication may effectively reduce bearing vibrations. The partial bearing faults may increase the oil film stiffness, and bearing faults and wheel flats have a significant impact on lubrication. In addition, wheel-rail excitations reduce the vibration ratio of the bearing outer ring while increasing the vibration of other vehicle components and little effects on the vibrations of the car body.
    Reference | Related Articles | Metrics | Comments0
    A High-dimensional Uncertainty Propagation Method Based on Supervised Dimension Reduction and Adaptive Kriging Modeling
    SONG Zhouzhou1, 2, ZHANG Hanyu1, 2, LIU Zhao3, ZHU Ping1, 2
    China Mechanical Engineering    2024, 35 (05): 762-769,810.   DOI: 10.3969/j.issn.1004-132X.2024.05.001
    Abstract1834)      PDF(pc) (3068KB)(272)       Save
     High-dimensional uncertainty propagation currently faced the curse of dimensionality, which made it difficult to utilize the limited sampling resources to obtain high-precision uncertainty analysis results. To address this problem, a high-dimensional uncertainty propagation method was proposed based on supervised dimension reduction and adaptive Kriging modeling. The high-dimensional inputs were projected into the low-dimensional space using the improved sufficient dimension reduction method, and the dimensionality of the low-dimensional space was determined by using the Ladle estimator. The projection matrix was embedded into the Kriging kernel function to reduce the number of hyperparameters to be estimated and improve the modeling accuracy and efficiency. Finally, the leave-one-out cross-validation error of the projection matrix was innovatively defined and the corresponding Kriging adaptive sampling strategy was proposed, which might effectively avoid large fluctuations of model accuracy in the adaptive sampling processes. The results of numerical and engineering examples show that, compared with the existing methods, the proposed method may obtain high-precision uncertainty propagation results with fewer sample points, which may provide references for the uncertainty analysis and design of complex structures. 
    Reference | Related Articles | Metrics | Comments0
    A Multi Index Comprehensive Optimal Anti Impact Trajectory Planning Method
    RONG Yu, CHEN Gang, DOU Tianci,
    China Mechanical Engineering    2024, 35 (02): 305-316.   DOI: 10.3969/j.issn.1004-132X.2024.02.015
    Abstract754)      PDF(pc) (9989KB)(264)       Save
    A comprehensive optimal trajectory planning method was proposed to improve the efficiency and impact resistance of robotic arms. Firstly, by establishing a 3-5-3 polynomial curve mathematical model, a joint motion trajectory with controllable endpoint motion parameters was constructed. Secondly, considering constraints such as joint position, velocity, and acceleration, the objective function was defined using the weighted coefficient method to achieve a comprehensive optimization of the action time, impact, and dexterity of the robotic arm. The dynamic weighting method was used in the design of the objective function to address the contradiction between joint velocity and impact. Finally, for the standard particle swarm optimization algorithm, the Latin hypercube sampling function was used to homogenize the population, and a random inertia weight update strategy was proposed to obtain an improved particle swarm algorithm. This algorithm was used to optimize the objective function and obtain the comprehensive optimal motion trajectory. Simulation and prototype experiments were conducted, and the experimental results demonstrate the feasibility of the proposed method.
    Reference | Related Articles | Metrics | Comments0
    China Mechanical Engineering    2025, 36 (04): 1-.  
    Abstract371)      PDF(pc) (293186KB)(262)       Save
    Related Articles | Metrics | Comments0
    Assembly Array Tractile State Sensing Technology of Micro Flexible Flat Cables
    LIN Jie, HU Zhikai, LIU Siyuan, TANG Weiwei, CHU Zhongyi
    China Mechanical Engineering    2024, 35 (02): 287-292,304.   DOI: 10.3969/j.issn.1004-132X.2024.02.013
    Abstract539)      PDF(pc) (7211KB)(261)       Save
    For the problems of small device size and visual occlusion during the micro flexible flat cable assembly operations, an assembly state sensing technology of micro flexible flat cables was proposed based on capacitive array tactile sensors herein. Firstly, the mechanism of capacitive three-dimensional tactile sensing was analyzed, and a highly sensitive array tactile sensor based on vertical topological mesh dielectric layer was designed to realize highly sensitive sensing of the assembly state of the micro flexible flat cables. Secondly, in order to overcome the limitation of wiring complexity and array scanning cycle, based on the expansion of capacitive digital chip, the highly dynamic three-dimensional array information scanning system was designed and the highly dynamic sensing for assembly states of micro flexible flat cables was realized, and the miniaturized capacitive array tactile sensors were fabricated integrally. Finally, the robot micro flexible flat cable assembly operating system was built and the array tactile information features were collected and analyzed in real time during the assembly processes, so as to verify the accuracy and effectiveness of the proposed technology.
    Reference | Related Articles | Metrics | Comments0
    Research on Optimal Pose Set Planning Method under Physical Constraint Robot Kinematics Calibration
    JIANG Jiguang, HOU Jue, SU Chengzhi, BA Qijiao, TIAN Aixin, XU Mingyu
    China Mechanical Engineering    2024, 35 (03): 472-480.   DOI: 10.3969/j.issn.1004-132X.2024.03.009
    Abstract749)      PDF(pc) (5499KB)(256)       Save
    In the processes of kinematics calibration of industrial robots under physical constraints, the calibration accuracy was affected by the selection of the pose set, which in turn was constrained by the calibration devices. To solve these problems, an optimal pose set planning method was proposed based on sampling interval evaluation combined with pose set optimization. Firstly, the robot kinematics model and the distance constraint calibration model were established, and the robot system parameter error constraint equation and error Jacobian matrix were calculated. Secondly, the workspace of robot was divided into spatial grids and evaluate each grid interval using Latin hypercube sampling combined with observable indicators to obtain the optimal sampling interval. Finally, based on offline data, the calibration accuracy prediction model was established based on offline data and search for the optimal pose set within the optimal sampling interval. By planning and verifying the optimal pose set for the ZhongRui RT-608 robot, the results show that the average fitting sphere radius after calibration is 0.3947 mm based on the optimal pose set, which is 57.98% lower than that of the random pose set.
    Reference | Related Articles | Metrics | Comments0
    Design of Twisting Climbing Wheeled Inspection Robot for Mining Wire Ropes
    TANG Chaoquan, TONG Binghang, TANG Wei, ZHANG Gang, WANG Siyuan, TANG Hongwei, LIU Bei, ZHOU Gongbo
    China Mechanical Engineering    2024, 35 (10): 1732-1739.   DOI: 10.3969/j.issn.1004-132X.2024.10.003
    Abstract692)      PDF(pc) (6279KB)(243)       Save
    In response to the unmanned inspection requirements of mining wire ropes, a rope-twisting climbing inspection robot was designed and developed. Compared to traditional axial climbing robots, which required approximately 91.5% of the driving force. When carrying a load of 3 kg, the robot may overcome obstacles with a height 0.6 mm higher than that of axial climbing robots. With an obstacle height of 3 mm, the maximum load capacity exceeds that of axial climbing robots by 0.4 kg. Climbing experiments were conducted under simulated deep mine conditions with wire rope vibrations. The results show that the climbing robots exhibite stable climbing performance when the wire ropes are stationary, achieving a maximum climbing speed of 8.25 m/min and capable of continuous climbing for 500 m. Under low-frequency large-amplitude vibration conditions, the climbing speed of the robot is higher than that when stationary, while under high-frequency small-amplitude vibration conditions, slight fluctuations in climbing speed are observed due to wire rope vibrations.
    Reference | Related Articles | Metrics | Comments0
    Chatter Identification Method for Heavy-duty Robotic Milling Systems Based on Variational Mode Filtering and Attention Mechanism
    LIANG Zhiqiang1, 2, CHEN Sichen1, DU Yuchao1, LIU Baolong1, 2, GAO Zirui1, YUE Yi3, XIAO Yubin4, ZHENG Haoran1, QIU Tianyang1, LIU Zhibing1
    China Mechanical Engineering    2025, 36 (05): 1018-1027,1073.   DOI: 10.3969/j.issn.1004-132X.2025.05.013
    Abstract1330)      PDF(pc) (7393KB)(243)       Save
    A method was proposed for identifying chatters in heavy-duty robotic milling systems by integrating variational mode filtering with fixed parameters, envelope filtering and an attention mechanism network identification. Initially, variational mode filtering theory was applied to eliminate non-chatter signal components in the high-frequency ranges by optimally selecting a quadratic penalty. Then, to swiftly identify the current machining conditions, the envelope filtering method was employed, leveraging signal time domain distribution and the frequency domain mapping law to remove the spindle speed-related signal components in the low-frequency ranges. Subsequently, a network identification model incorporating an attention mechanism was developed to identify preprocessed multi-temporal short-term signal segments for machining condition identification, followed by verification experiments on heavy-duty robotic milling systems. Experimental analysis results demonstrate that by eliminating non-chatter signals in the high-frequency ranges and spindle speed-related components in the low-frequency ranges, the accuracy of regenerative chatter identification is significantly enhanced, achieving an identification accuracy of 98.75%. Compared with alternative identification methods, the proposed method may effectively identify regenerative chatters during heavy-duty robotic milling processes, thus offering valuable technical support for future online chatter suppression of heavy-duty robotic milling.
    Reference | Related Articles | Metrics | Comments0
    Research on Microfluidic Chip Fluid Dynamic Pressure Polishing Process
    FU Zhenfeng, WANG Zhenzhong, WANG Biao
    China Mechanical Engineering    2024, 35 (03): 534-540.   DOI: 10.3969/j.issn.1004-132X.2024.03.015
    Abstract558)      PDF(pc) (6895KB)(241)       Save
    Microstructure polishing ball was designed based on fluid dynamic pressure lubrication theory, through theoretical analysis of the microstructure in the polishing ball rotation processes to generate more fluid dynamic pressure. Fluent was used to analyze the type of microstructure and the effects of microstructure size on the dynamic pressure generated by polishing, the generated polishing force was obtained by fitting Fluents data via MATLAB. After obtaining the better parameters of microstructure, area polishing of the microfluidic chips was performed. The surface roughness of the microfluidic chip plane area is reduced from 1.330 nm to 0.658 nm, and the surface roughness of the microfluidic chip flow channel is reduced from 0.737 nm to 0.379 nm. Thus, the applications of hydrodynamic pressure polishing process to the deterministic polishing of microfluidic chips may be further explored.
    Reference | Related Articles | Metrics | Comments0
    Review for Research of Fatigue Life Prediction of Welded Structures under Complex Loads and Extreme Environments
    DONG Zhibo1, WANG Chengcheng1, LI Chengkun1, LI Junchen2, ZHAO Yaobang2, LI Wukai2, XU Aijie2
    China Mechanical Engineering    2024, 35 (05): 829-839.   DOI: 10.3969/j.issn.1004-132X.2024.05.008
    Abstract883)      PDF(pc) (6000KB)(240)       Save
    The welded joints were susceptible to defects and stress concentration, rendering them vulnerable areas for fatigue crack initiation and propagation under fatigue loads. In comparison to homogeneous materials, the microstructure and stress localization in each of regions for the joints further complicated the fatigue issue in welded structures. Unlike ideal experimental conditions, the actual service environments of welded structures were intricate, it was necessity to consider the coupling characteristics between environmental factors and welded structures when predicting welded structure fatigue life. Therefore, the internal factors influencing welded structures were summarized and analyzed while reviewing existing life prediction models from perspectives encompassing complex loads and extreme service environment. Combining the latest research progresses, the recommendations were proposed to enhance fatigue life assessment methods for the welded structures.
    Reference | Related Articles | Metrics | Comments0
    Robust Control of High-pressure Pneumatic Pressure Servo Systems
    ZHANG Dijia1, 2, GAO Luping2, ZHOU Shaoliang2, GAO Longlong2, LI Baoren2
    China Mechanical Engineering    2024, 35 (07): 1141-1150.   DOI: 10.3969/j.issn.1004-132X.2024.07.001
    Abstract668)      PDF(pc) (7020KB)(237)       Save
    Parameter uncertainty and unmodeled dynamics of HPPS restricted the improvement of the control accuracy. An adaptive robust control method was proposed and applied to control the HPPS based on RISE. This paper considered the influencs of HESV control performance on the high-precision control of HPPS, and a cross-comparison test was designed. The results show that the HESV position control method may avoid sinusoidal signal distortions and reduce steady-state pressure jitter, and the HPPS pressure control method may improve the response speed and dynamic tracking capability of the systems.
    Reference | Related Articles | Metrics | Comments0
    Longitudinal and Lateral Coordination Control of Cars with Aerodynamic Interference of Wind-vehicle-bridge System
    YUAN Zhiqun, LI Yuehan, LIN Li, SUN Pengfei, ZHANG Yi,
    China Mechanical Engineering    2024, 35 (04): 731-741.   DOI: 10.3969/j.issn.1004-132X.2024.04.016
    Abstract567)      PDF(pc) (14748KB)(232)       Save
    To enhance the driving safety caused by cross-wind, the transient analysis model of a car overtaking truck on cross-sea bridge was established using a coupling method of composite wind and moving mesh, and the mechanism of aerodynamic interaction between “wind-vehicle-bridge” in the overtaking processes of a car and the influences on the aerodynamic characteristics of the car were revealed. The overtaking trajectory planning models were developed using a fifth degree polynomial interpolation algorithm, and the longitudinal and lateral coordination motion controllers were developed, using dual fuzzy PID control method for the longitudinal controllers and sliding mode control method of radial basis function network for the lateral controllers. The path tracking capability analysis and driving stability evaluation of the overtaking processes of a car under cross-wind were carried out. The results show that the aerodynamic interference is significantly related to the travelling lanes and positions. The longitudinal and lateral coordination motion controllers have better accuracy and robustness in controlling the path tracking, and the cross-wind stability is significantly improved.
    Reference | Related Articles | Metrics | Comments0
    Simulation and Experimental Study of Temperature for Polishing Aero-engine Blades with Abrasive Cloth Wheel#br#
    #br#
    XIAN Chao1, 3, XIN Hongmin2, 3, DAI Hui2, CHENG Qingsi2
    China Mechanical Engineering    2025, 36 (04): 802-810.   DOI: 10.3969/j.issn.1004-132X.2025.04.017
    Abstract423)      PDF(pc) (9909KB)(232)       Save
    ANSYS software was used to simulate the instantaneous temperature fields in the polishing processes with abrasive cloth wheel using a rectangular heat source loading method. The temperature distribution on the blade surfaces and along the blade thickness direction in the polishing processes was studied, and the influences of processing parameters on the polishing temperature was explored. The results show that as the polishing process progresses, the polishing temperature distribution gradually stabilizes. When the polishing temperature stabilizes, the temperature values of the machined parts of the blade at different depths tend to be consistent, while the temperature of the machining parts decreases continuously along the depth direction; the polishing temperature gradient gradually decreases from the contact area being machined to the machined area; the polishing temperature increases with the increase of spindle speed, the effects of feed speed on the polishing temperature are not significant and the polishing temperature is positively correlated with the tangential polishing forces; the deviation rates between the measured and the simulated temperature values are not more than 10%, indicating that the good consistency and high accuracy of the simulation.
    Reference | Related Articles | Metrics | Comments0
    China Mechanical Engineering    2024, 35 (05): 1-.  
    Abstract326)      PDF(pc) (110765KB)(228)       Save
    Related Articles | Metrics | Comments0
    Experimental Study of Surface Morphology of Polycarbonate Ultra-low Temperature Cooling Turning
    BAO Rui, LIU Kuo, ZHANG Jie, HAN Lingsheng, LI Jianming, ZUO Yueshuai, LIU Haibo, WANG Yongqing
    China Mechanical Engineering    2024, 35 (02): 201-207.   DOI: 10.3969/j.issn.1004-132X.2024.02.002
    Abstract517)      PDF(pc) (9197KB)(223)       Save
    Aiming at the problems of poor heat resistance, deformation, and swelling, a turning test of polycarbonate was carried out under dry cutting, water cooling, ultra-low temperature cooling, and the shape of the surface was analyzed. The morphological differences of machined surfaces were explained from the perspective of relaxation time of molecular chains, crazing generation, and brittle-toughness transition. It is found that, on polycarbonate surfaces, dry cutting produces a large number of strong crazing, water-cooled cutting produced a large number of fine crazing, while the ultra-low temperature cooling cutting produces less crazing. Therefore, ultra-low temperature cooling has a positive effect on improving the processing quality of polycarbonates.
    Reference | Related Articles | Metrics | Comments0
    Research on Thermal Characteristics of Auxiliary Bearing in AMBs and Friction Reduction Design
    LI Yingchun, NIE Aonan, YANG Mingxuan, ZHU Dingkang, QIU Ming, YANG Gengsheng
    China Mechanical Engineering    2024, 35 (04): 646-655.   DOI: 10.3969/j.issn.1004-132X.2024.04.008
    Abstract719)      PDF(pc) (8283KB)(221)       Save
     The rotor of the AMBs and the auxiliary bearing might produce huge impacts, vibrations and friction heat during the rotor falling which was easy to make the auxiliary bearing fail. The thermal characteristics during the vertical rotor drop on auxiliary bearings were studied, and the main factors leading to the auxiliary bearing failure during the rotor falling were analyzed herein. Subsequently, a method of reducing friction was proposed to deposit solid lubricating film(GLC) on the key surfaces of auxiliary bearings by magnetron sputtering technology, and the rotor drop tests of coated and uncoated auxiliary bearings were performed. The results show that the maximum temperature of the auxiliary bearing is as 210.60 ℃ at a drop speed of 20 000 r/min, which appear in the high-speed rubbing stage between the rotor and the inner ring end face of the bearing. The temperature is higher than the tempering temperature of bearing steel of 160 ℃, which will lead to the failure of the bearing burn. The surface appearance of the channel and end face of the self-lubricating auxiliary bearings coated with GLC film is obviously better than that of the uncoated ordinary auxiliary bearing after the drop tests. The hardness decrease of the inner ring end face caused by friction and heating is lighter, the trajectory of the center of mass and axial displacement are more stable, and the temperature rise is lower. The GLC films play a key role in self-lubrication, wear resistance and friction reduction, the service life and service reliability of the auxiliary bearings are improved. It also provides an idea and method to solve the problems of auxiliary bearing failures easily in AMBs. 
    Reference | Related Articles | Metrics | Comments0
    Accelerated Editing of Automotive Component Load Spectrum Based on S-transform Dual Threshold Method
    YAO Lingyun, LIN Yongjie, LI Li,
    China Mechanical Engineering    2024, 35 (02): 215-220.   DOI: 10.3969/j.issn.1004-132X.2024.02.004
    Abstract475)      PDF(pc) (2538KB)(218)       Save
     Based on S-transform a dual threshold editing method was proposed to address the issues of poor acceleration of editing performance in S-transform editing. Firstly, this method performed an S-transform on the load spectrum to obtain the maximum amplitude spectrum. Then the method retained the corresponding load spectrum segments based on the amplitude spectrum segments which were recognized and retained by the dual threshold method to assemble the accelerated load spectrum. Finally, the statistical parameters, power spectral density, breakdown count, and fatigue simulation results of the acceleration spectra edited by the S-transform dual threshold editing method and the S-transform editing method were compared and analyzed. The results indicate that the S-transform dual threshold editing method may significantly compress the original load time, and the compression efficiency is higher than that of S-transform editing method. The fatigue damage and life analysis errors of the steering joint are smaller, which verifies the proposed method is suitable for accelerated editing research of automotive component load spectra.
    Reference | Related Articles | Metrics | Comments0
    Research on Compound Wave Propulsion Performance Improvement for Bionic Fish Robots
    LUO Zirong1, XIA Minghai1, YIN Qian2, LU Zhongyue1, JIANG Tao1, ZHU Yiming1
    China Mechanical Engineering    2024, 35 (11): 1901-1908.   DOI: 10.3969/j.issn.1004-132X.2024.11.001
    Abstract598)      PDF(pc) (8473KB)(218)       Save
    Motivated by the profound impacts of longitudinal and transverse waves of earthquake, a novel underwater bionic propeller that utilized longitudinal and transverse compound wave patterns was proposed and designed. A kinematic model incorporating the composite waves was theoretically established, alongside the development of a physical prototype and testing platform. The propulsion performances of the propeller were systematically compared and analyzed through CFD simulations as well as prototype tests under varying amplitudes of longitudinal wave superposition. Simulation results show that both the thrust and velocity generated by the undulating fin may be significantly enhanced, with mean thrust increasing by 27.6% and peak thrust exceeding 200%. Experimental results reveal that under a frequency of 2 Hz with a longitudinal-wave amplitude of 20°, the steady-state average velocity achieved by the propeller reaches 0.761 m/s, which is approximately 14.7% greater than that of without longitudinal wave. This paper demonstrates that composite wave bionic fins exhibit superior thrust and velocity performance compared to single sinusoidal wave configurations, thereby offering an innovative propulsion mechanism for advancing high-performance bionic fish robots.
    Reference | Related Articles | Metrics | Comments0
    Dual-resource Constrained Flexible Machining Workshop Inverse Scheduling Problem
    WEI Shupeng, TANG Hongtao, LI Xixing, YANG Guanyu, ZHANG Jian
    China Mechanical Engineering    2024, 35 (03): 457-471.   DOI: 10.3969/j.issn.1004-132X.2024.03.008
    Abstract780)      PDF(pc) (13436KB)(214)       Save
    In order to improve the efficiency and stability of machining workshops in dynamic production environments, an inverse scheduling problem model of flexible machining workshops was established considering machine and worker constraints. The model aimed to minimize makespan, machine energy consumption and inverse deviation index by adjusting workpiece scheduling, worker work, and machining parameters. Aiming at the problem characteristics, an improved differential evolution algorithm was proposed. In the algorithm, a hybrid double-layer encoding method was designed to reduce the search difficulty. Two initialization methods were proposed to improve the population quality based on dispatching rules. In order to strengthen and balance the global and local search, adaptive genetic operations and neighborhood search strategies were designed based on elite selection. The Hamming distance was improved, and a crowding operator was proposed to reflect the true diversity of the population. In the experiment, 33 test instances were constructed and the proposed algorithm was compared with the other 7 algorithms to verify the performance. Finally, the real inverse scheduling cases of a hydraulic cylinder production workshop in two different dynamic environments were analyzed. The results show that the proposed algorithm may effectively reduce the makespan by 4.2 % and the machine energy consumption by 20.2 % with a little change in the original schedule.
    Reference | Related Articles | Metrics | Comments0
    A GPU-accelerated High-efficient Multi-grid Algorithm for ITO
    YANG Feng, LUO Shijie, YANG Jianghong, WANG Yingjun,
    China Mechanical Engineering    2024, 35 (04): 602-613.   DOI: 10.3969/j.issn.1004-132X.2024.04.004
    Abstract762)      PDF(pc) (8284KB)(214)       Save
     An efficient multi-grid equation solving method was proposed based on the h-refinement of splines to address the challenges posed by large-scale ITO computation and low efficiency of traditional solving methods. By the proposed method, the weight information obtained through h-refinement interpolation between coarse and fine grids was used to construct the interpolation matrix of the multi-grid method, thereby enhancing the accuracy of mapping information for both coarse and fine grids and improving computational efficiency. Additionally, a comprehensive analysis of the multi-grid solving process was conducted, culminating in the development of an efficient GPU parallel algorithm. Numerical examples illustrate that the proposed method outperforms existing methods, demonstrating speedup ratios of 1.47, 11.12, and 17.02 in comparison to the linear interpolation multi-grid conjugate gradient method algebraic multi-grid conjugate gradient method, and pre-processing conjugate gradient method respectively. Furthermore, the acceleration rate of GPU parallel solution surpasses that of CPU serial solution by 33.86 times, which significantly enhances the efficiency of solving large-scale linear equations.
    Reference | Related Articles | Metrics | Comments0
    Design of Scale-changeable Pantograph Legs for Heavy-duty Robots
    SUO Zhe, LI Xiang, LIU Jianfeng, WANG Jixin
    China Mechanical Engineering    2025, 36 (02): 191-196.   DOI: 10.3969/j.issn.1004-132X.2025.02.001
    Abstract500)      PDF(pc) (7951KB)(208)       Save
    The motion characteristics of the 2 DOF(degree-of-freedom) scale-changeable pantograph leg mechanisms were analyzed, different designs for scale change were compared. A scale-changeable pantograph leg with a nonlinear length adjustment mechanisms was proposed. The length of the thigh and shank link could be adjusted with a single driver according to the nonlinear proportion relation. Thus, the scale could be changed while preserving the pantograph mechanism properties. The scale-changeable pantograph leg may change the scale without disassembling, adjust the foot working space and the carrying capacity of the robots.
    Reference | Related Articles | Metrics | Comments0
    Elliptic Cycloid Tool Path Optimization of Impeller Rough Machining Based on Parameter Mapping
    HAN Feiyan, GU Zhicheng, ZHAO Yipeng, ZHANG Chuanwei
    China Mechanical Engineering    2024, 35 (03): 438-444,456.   DOI: 10.3969/j.issn.1004-132X.2024.03.006
    Abstract595)      PDF(pc) (17907KB)(203)       Save
    In order to improve the opening groove processing efficiency of complex curved blade passages, a cycloid tool path planning method for surface rough machining was proposed. Firstly, the processable area of the passages was parameterized. Then, a mathematical model of key parameters for elliptical cycloid tool path, with the optimization goal of minimizing machining time, was established in the parameter domain. The best short-axis length of the ellipse and the cycloid step that satisfied the machining requirements were solved by the interval narrowing method, then the cycloid tool path could be determined in the parameter domain accordingly. Afterwards, the trajectory of the parameter domain was mapped to the physical domain to obtain the cutting path. Finally, the efficiency of the proposed trajectory planning method was evaluated with an example of calculation of elliptical cycloidal open rough machining trajectory for an impeller, whose calculation time is 19.4% faster than the traditional line cutting method. In addition, the simulation results of cycloidal channel opening and line cutting show that the machining efficiency of the proposed method is 22.4% higher than that of the traditional line cutting method under the same parameter setting. The practical results of cycloidal milling show that the shape of impeller runner cut is consistent with the cycloidal track, whose surface residue meets the rough machining requirements. This paper provides a new trajectory planning method for rough machining of impeller flow channels to improve the machining efficiency, which is a substitution for the traditional line cutting method. 
    Reference | Related Articles | Metrics | Comments0