Most Download articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

    In last 3 years
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Industrial Engineering and Lean Management for Smart Manufacturing
    QI Ershi, HUO Yanfang, LIU Hongwei
    China Mechanical Engineering    2022, 33 (21): 2521-2530.   DOI: 10.3969/j.issn.1004-132X.2022.21.001
    Abstract1824)      PDF(pc) (4622KB)(1330)       Save
    This paper reviewed the development routes of developed countries such as the United States, Japan, and Germany since the emergence of industrial engineering for more than 100 years, discussed the regular characteristics of enterprise management innovation, and drew the conclusion that smart manufacturing also needed IE/LM to provide management support. According to the smart manufacturing project cycle, the functions of IE/LM in smart manufacturing engineering were analyzed from the perspectives of basic preparation, scheme selection, and integration development. The framework of lean smart management system for smart manufacturing transformation of Chinese enterprises was given, and the improvement ideas and methods of smart-lean integration were explained based on a case. Finally, some key technologies of smart manufacturing management facing transformation and upgrading of Chinese enterprises were presented based on the actual needs of China. 
    Reference | Related Articles | Metrics | Comments0
    China Mechanical Engineering    2022, 33 (05): 1-.  
    Abstract346)      PDF(pc) (126975KB)(1103)       Save
    Related Articles | Metrics | Comments0
    Research Review of Error Compensation Technology for Ultra-precision Machining
    CHEN Qidi, HU Xiaolong, LIN Min, SUN Xiaoxia, ZHANG Tao, ZHOU Zhixiong
    China Mechanical Engineering    2023, 34 (03): 253-268.   DOI: 10.3969/j.issn.1004-132X.2023.03.001
    Abstract2022)      PDF(pc) (8557KB)(982)       Save
     Ultra-precision machining technology was a key technology in high-end manufacturing fields. At present, ultra-precision machining has entered the nano scale. Mastering the key technology of ultra-precision machining error control, ensuring and improving the machining accuracy of CNC machine tools, become a hot research point to improve the machining and manufacturing levels. This paper systematically summarized the research status and development trend of ultra-precision machining error compensation technology, and focused on the geometric errors, force induced errors, thermal induced errors and their compensation methods, which had the greatest impact on ultra-precision machining. Then, a series of problems of ultra-precision machining in geometric error separation, cutting force, thermal induced error measurement and compensation were deeply discussed, and it is further pointed out that the ultra-precision machining error compensation technology should also pay attention to the development direction of high efficiency, high precision, generalization, modularization, intelligence and flexibility.
    Reference | Related Articles | Metrics | Comments0
    Tool Wear and Remaining Useful Life Estimation of Difficult-to-machine Aerospace Alloys:a Review
    LUO Huan, ZHANG Dinghua, LUO Ming
    China Mechanical Engineering    2021, 32 (22): 2647-2666.   DOI: 10.3969/j.issn.1004-132X.2021.22.001
    Abstract1086)      PDF(pc) (2230KB)(974)       Save
     Due to the special application requirements, such as light weight designs, strength,in aeronautical manufacturing field, a large number of difficult-to-machine materials such as titanium alloy and nickel-based alloy were used, and the cutting tools wore fast. Excessive tool wear would affect product quality. Under the premise of ensuring product quality, it was urgent to monitor tool wear states and to predict tool remaining useful life in order to make full use of the cutting tools. The definition, classification and models of the cutting tool remaining useful life estimation were described herein. Meanwhile tool wear monitoring was the basis and prerequisite of tool life prediction, the main steps and common models were briefly described. The remaining useful life prediction models might be categorized into physics-based models, data-driven models and hybrid models. The advantages and disadvantages of different prediction methods and their application scenarios were summarized , and the future research directions were discussed.
    Reference | Related Articles | Metrics | Comments0
    Development Status and Prospect of Key Rail Grinding Equipment and Technology of Grinding Stone
    ZHANG Wulin, FANXiaoqiang, ZHU Minhao, DUAN Haitao
    China Mechanical Engineering    2022, 33 (19): 2269-2287.   DOI: 10.3969/j.issn.1004-132X.2022.19.001
    Abstract1072)      PDF(pc) (17216KB)(728)       Save
     The rail grinding strategies and techniques were reviewed, and the key equipment of the grinding methods using grinding wheels(active grinding and high-speed passive grinding)and the milling and grinding compound process were summarized. Meanwhile, the research status of rail grinding stone(grinding wheel, equipped with rail grinding train and used for cutting tools)were reviewed from ingredients, forming processes, structural design and grinding performance evaluation criterions, etc. It was concluded that the fine formula design, scientific evaluation criterions, etc. were the main challenges for the development of high-performance grinding stones. Finally, it was pointed out that the greenization, standardization, and intelligence were the important directions for future development of grinding stone technology. 
    Reference | Related Articles | Metrics | Comments0
    State-of-the-art of Key Maritime Rescue and Salvage Equipment and Technology
    ZHAO Jiechao, JIN Hao, CHEN Jian, PAN Changcheng, ZHANG Yingxiang, WANG Jiwu, WENG Datao
    China Mechanical Engineering    2022, 33 (04): 432-451,458.   DOI: 10.3969/j.issn.1004-132X.2022.04.007
    Abstract1003)      PDF(pc) (3281KB)(702)       Save
     To promote the modernization of the national emergency management systems and capabilities, combined with the current development of maritime emergency rescue capabilities in China, the key issues exposed in some typical maritime emergency rescue cases in recent years were deeply analyzed, and the conclusion that “systematic construction” was the core issue that urgently needed to be strengthened in the construction of Chinese maritime rescue and salvage equipment and technology was pointed out. From the perspective of the land-sea-air-space integrated, aiming at the four major Chinese rescue and salvage missions of life rescue, environmental rescue, property rescue, and emergency rescue and salvage, this paper systematically divided the key equipment technology of maritime rescue and salvage into 7 types according to the dimensions of space-based, air-based, water surface, and underwater. Aiming at the current development of each type of key equipment technology, the Delphi method, brainstorming method and bibliometric method were used to carry out research and judgment on the development of key maritime rescue and salvage equipment and technology. The results of the study selected 13 key equipment technologies that require urgent attention from the 7 categories of key equipment technologies. Meanwhile, the current challenges faced by each key equipment technology were systematically analyzed, and recommendations for the development goals and core construction tasks in the next 5~15 years were given as well. 
    Reference | Related Articles | Metrics | Comments0
    Research Progresses of Superhydrophobic Surface Processing Technology and Abrasion Resistance
    HUANG Yun, HUANG Jianchao, XIAO Guijian, LIU Shuai, LIN Ouchuan, LIU Zhenyang
    China Mechanical Engineering    2024, 35 (01): 2-26.   DOI: 10.3969/j.issn.1004-132X.2024.01.001
    Abstract554)      PDF(pc) (50387KB)(669)       Save
    The abrasion resistance of currently prepared superhydrophobic surfaces is generally poor, which limite the applications in various fields. Studied results found that micro-nano structure and low surface energy were the key factors to achieve superhydrophobic properties. Firstly, based on the mechanism of superhydrophobic surface, the superhydrophobic surface texture was summarized, aiming to solve the wear-prone challenge of micro-nano structures by optimizing the surface texture. Secondly, the superhydrophobic surface processing technology was summarized, and measures to reduce surface energy were analyzed in terms of cost and efficiency which might provide ideas for expanding the superhydrophobic surface processing system. Then, the means of analyzing the abrasion resistance of superhydrophobic surfaces were concluded in detail and the methods of improving the abrasion resistance of superhydrophobic surfaces were described. Finally, the future development prospects of abrasion resistant superhydrophobic surfaces was prospected, with a view to promote the large-scale applications of superhydrophobic surfaces in engineering.
    Reference | Related Articles | Metrics | Comments0
    Digital Transformation Mode and Strategy of SMEs in China
    WANG Baicun, ZHU Kailing, XUE Yuan, BAI Jie, ZANG Jiyuan, XIE Haibo, YANG Huayong,
    China Mechanical Engineering    2023, 34 (14): 1756-1763.   DOI: 10.3969/j.issn.1004-132X.2023.14.013
    Abstract930)      PDF(pc) (5220KB)(667)       Save
    Promoting the digital transformation of SMEs was of great significance for Chinas manufacturing industries to improve quality and increase efficiency. SMEs were facing problems in digital transformation, such as high cost, fuzzy path, talent shortage, and lacking analytical framework and reference paradigm for digital transformation. The key factors to achieve digital transformation were clarified by building an analytical framework for SMEs digital transformation herein. Through case studies, 4 basic path models of digital transformation of SMEs were summarized and proposed. Based on the above researches, targeted suggestions were proposed for SMEs digital transformation in China, so as to promote the digital and intelligent development of SMEs.
    Reference | Related Articles | Metrics | Comments0
    Related Parallel Machine Online Scheduling Method Based on LSTM-PPO Reinforcement Learning
    HE Junjie, ZHANG Jie, ZHANG Peng, WANG Junliang, ZHENG Peng, WANG Ming
    China Mechanical Engineering    2022, 33 (03): 329-338.   DOI: 10.3969/j.issn.1004-132X.2022.03.009
    Abstract918)      PDF(pc) (6559KB)(656)       Save
    To solve the related parallel machine online scheduling problems, the total weighted completion time was taken into account, and an online scheduling method was proposed based on LSTM-PPO reinforcement learning. A LSTM-integrated agent was designed to record the historical variations of workshop states and the corresponding scheduling policy adjustment, and then online scheduling decision was made according to the state information. Meanwhile, the workshop state matrix was designed to describe the problem constraints and optimization goals, additional machine waiting was introduced in scheduling action space to expand solution space, and the reward function was designed to decompose the optimization goal into step-by-step rewards to achieve scheduling decision evaluation. Finally, the model updating and global optimization of parameters was achieved by PPO algorithm. Experimental results show that the proposed method has competitive solutions than the existing heuristic rules, and the proposed algorithm is applied to the production scheduling of the actual workshops, which effectively reduces the total weighted completion time.
    Reference | Related Articles | Metrics | Comments0
    Research Progresses on Surface Integrity of Bearing Grooves
    WANG Dongfeng, YUAN Julong, WANG Yanshuang, CHENG Yongjie, LYU Binghai
    China Mechanical Engineering    2022, 33 (18): 2143-2160.   DOI: 10.3969/j.issn.1004-132X.2022.18.001
    Abstract688)      PDF(pc) (5702KB)(643)       Save
    Improving the surface integrity of bearing grooves was an important solution to solve technical problems such as low reliability life, high friction power consumption and unstable vibrations and noises of bearings. On the basis of comprehensive research of generalized surface integrity by domestic and foreign scholars, the definition and connotation of characteristic parameters of bearing groove surface integrity were proposed, and the significance of characteristic parameters and the influence mechanism on bearing performance were expounded. The influences of different processing processes such as forging, turning, heat treatment, grinding and ultra-precision on the surface characteristic parameters of bearing raceways were analyzed in details, and the corresponding control measures were given. The new technologies, new processes, and new methods for improving surface integrity were briefly introduced. Finally, the summary and prospect of improving the surface integrity of bearing grooves were made to provide some references for improving the contact fatigue lifes of bearings.
    Reference | Related Articles | Metrics | Comments0
    Research on Interaction between Pedestrian and Automated Vehicle
    LYU Wei, GUO Fu , LIU Li, ZHANG Zeyu, WANG Tianbo
    China Mechanical Engineering    2023, 34 (05): 515-523.   DOI: 10.3969/j.issn.1004-132X.2023.05.002
    Abstract677)      PDF(pc) (3924KB)(642)       Save
    From the perspective of the pedestrian-vehicle-environment system, the effects of pedestrian safety facility, AVs yielding behavior, approaching direction and eHMI on pedestrian-AV interaction were investigated. Based on a cave automatic virtual environment(CAVE) simulation platform, the Unity 3D software was utilized to design and develop the AVs driving scenario. Thirty-eight volunteers were recruited for the pedestrian-AV interaction experiments. During the experiments, the participants decision time, decision results and subjective experience were recorded and further statistically analyzed with survival analysis. The results indicate that with the presence of an AV in the traffic, pedestrian safety facility, AVs yielding behavior and eHMI may significantly shorten pedestrians decision time, enhance their interactive experience and improve traffic efficiency. However, the influences of pedestrian safety facility on pedestrians crossing decision and behavior exist from the earlier stage of the crossing gap, compared with AVs yielding behavior. Meanwhile, the efficacy and clarity of a light band-based eHMI are somewhat limited for conveying AVs yielding intention.
    Reference | Related Articles | Metrics | Comments0
    Research Status of Key Technologies for Energy Management System of Marine Hybrid Propulsion Systems
    SUN Xiaojun, SONG Enzhe, YAO Chong
    China Mechanical Engineering    2022, 33 (04): 469-481,495.   DOI: 10.3969/j.issn.1004-132X.2022.04.010
    Abstract830)      PDF(pc) (4818KB)(624)       Save
    In the face of energy shortage and strict emission regulations, the use of new hybrid power system would become an important direction of ship development in the future. Firstly, the challenges were analyzed by the shipping industries, and the advantages and necessity of marine hybrid power were expounded. The topology and implementation framework of energy management systems were presented. Secondly, the research status of energy management strategy was analyzed, and the development route of hybrid system multi energy coupling energy management strategy was put forward. The challenges faced by the research and development of energy management strategies for marine hybrid power systems were explored , and  the future development trends and in-depth research directions were looked forward. The paper provides the research and development directions for the green and intelligent development of marine hybrid powers. 
    Reference | Related Articles | Metrics | Comments0
    Online Monitoring Method for NC Milling Tool Wear by Digital Twin-drivenLI Congbo
    SUN Xin, HOU Xiaobo, ZHAO Xikun, WU Shaoqing
    China Mechanical Engineering    2022, 33 (01): 78-87.   DOI: 10.3969/j.issn.1004-132X.2022.01.009
    Abstract797)      PDF(pc) (11516KB)(622)       Save
    In order to solve the problems of large errors of tool wear prediction model caused by continuous aging of CNC milling machines and difficulties of on-line acquisition of dynamic data during machining, a digital twin-driven online tool wear monitoring method was proposed. Firstly, a neural network was used to extract features from multi-source data in the machining processes, and a quantitative model of tool wear time varying deviation was established considering machine aging. Based on this, an on-line prediction method of tool wear in CNC milling was proposed. Then, a numerical control milling digital twin system for tool wear was developed to online sense the dynamic data and simulate the tool wear processes in real time. Finally, this method was applied to actual machining and compared with other prediction methods. The results show that this method may reduce the prediction errors and realize the accurate prediction of tool wear value.
    Reference | Related Articles | Metrics | Comments0
    Development of Gear Measurement Technology during Last 20 Years
    SHI Zhaoyao, YU Bo, SONG Huixu, WANG Xiaoyi
    China Mechanical Engineering    2022, 33 (09): 1009-1024.   DOI: 10.3969/j.issn.1004-132X.2022.09.001
    Abstract803)      PDF(pc) (72652KB)(611)       Save
    There were two forces that promoted the development of gear measurement technology. One was the continuous new requirements for gear measurement put forward by industrial development, and the other was the penetration of continuously improving related technologies in the field of gear measurement. Since the 21st century, the convergence of these two forces promoted the rapid development of gear measurement technology. Based on a brief review of the evolution of gear accuracy theory and gear measurement technology in the 20th century, the basic framework of gear generalized accuracy theory was put forward. The gear measurement technology during the last 20 years was systematically summarized from the aspects of gear full-information measurement technology, in-site rapid gear sorting and detection technology, extreme measurement technology for extra-large gears and micro gears, high-precision gear artifacts and traceability, etc. There is more than 100 years since the beginning of gear precision measurement, and it is currently in the critical stage of the transition from the 3rd generation to the next-generation of gear measurement. The overall technical concept of next-generation of gear measurement was presented, the basic theory and key technical problems that must be overcome were listed for realizing the next-generation of gear measurement, and the research focus and scientific issues of gear measurement in the next 10 years were prospected.
    Reference | Related Articles | Metrics | Comments0
    A Circular Target Stability Detection Method Based on Deep Learning Image Super-resolution
    CUI Haihua, XU Zhenlong, YANG Yapeng, MENG Yayun, WANG Baojun
    China Mechanical Engineering    2021, 32 (23): 2861-2867.   DOI: 10.3969/j.issn.1004-132X.2021.23.010
    Abstract557)      PDF(pc) (5820KB)(608)       Save
     In order to improve the recognition rate and location accuracy of circular targets under the conditions of long-distance and large deflection angle, a circular target stability detection method was proposed based on deep learning image super-resolution. The multi-angle and multi-distance image sets were constructed through a hybrid data set of real images and synthetic images, the pixel loss and perceptual loss were used to improve the loss function of image super-resolution model, so the super-resolution reconstruction of images might be realized and the image details of target contours might be enriched. By using the pretrained super-resolution model, the images were reconstructed. Finally, traditional detection algorithm was used to recognize and locate the circular targets. The experimental results show that the circular target recognition rate is increased by 40%, and the target location accuracy is increased by 8.47%. 
    Reference | Related Articles | Metrics | Comments0
    China Mechanical Engineering    2022, 33 (12): 1-.  
    Abstract410)      PDF(pc) (181211KB)(605)       Save
    Related Articles | Metrics | Comments0
    Energy Consumption Prediction Method for Industrial Robots
    TUO Junbo, PENG Qiuyuan, ZHANG Xianmin, LI Congbo
    China Mechanical Engineering    2022, 33 (22): 2727-2732,2740.   DOI: 10.3969/j.issn.1004-132X.2022.22.010
    Abstract628)      PDF(pc) (2858KB)(596)       Save
    Aiming at the defects of complex models, cumbersome operation and high cost of traditional energy consumption prediction methods for industrial robots, a meta-action-based energy consumption prediction method for industrial robots was proposed from the perspective of motion trajectory and action mode of end-effector. First, the meta-actions and energy consumption characteristics of static operations and dynamic operations of industrial robots were analyzed in the first place, and the energy consumption function of static meta-action and dynamic meta-action like axial motion and rotation et al, were built. Then, the motions of the target processes were disassembled based on the proposed meta-action library and the energy sonsumption calculation model of each meta-motion was built. Finally, energy consumption of industrial robots at target processes was realized by combining the energy consumption functions and calculation models. By applying the proposed method, the energy consumption prediction may be realized by disassembling operation processes as long as the energy consumption function of each meta-action was established by measuring meta-action power in advance, so the method has broad application prospects.
    Reference | Related Articles | Metrics | Comments0
    Research and Applications of Condition Monitoring and Predictive Maintenance of Marine Diesel Engines
    CHEN Dongmei, ZHAO Siheng, WEI Chengyin, CHEN Yajie
    China Mechanical Engineering    2022, 33 (10): 1162-1168.   DOI: 10.3969/j.issn.1004-132X.2022.10.004
    Abstract710)      PDF(pc) (3080KB)(547)       Save
    Based on the four dimensions of thermal-pressure parameters, lubricant oil conditions, vibrations and cylinder pressures, data acquisition and feature extraction were carried out, and a method for diesel engine condition monitoring was proposed based on OCSVM anomaly detection algorithm and Fisher discriminant analysis.  The CUSUMMR was used for parameter trend detection and the D-S evidence theory and weight of evidence method were used for multi-source information fusion. the RUL(remaining useful life) of diesel engine lubricating oil was predicted by LSTM. The Paper solves the problems such as low early warning rate, poor adaptability of the model under diesel engine dynamic conditions. 
    Reference | Related Articles | Metrics | Comments0
    China Mechanical Engineering    2021, 32 (23): 1-.  
    Abstract433)      PDF(pc) (140286KB)(545)       Save
    Related Articles | Metrics | Comments0
    Construction Method of Virtual-real Drive Systems for Robots in Digital Twin Workshops
    LIU Huailan, ZHAO Wenjie, LI Shizhuang, YUE Peng, MA Baorui
    China Mechanical Engineering    2022, 33 (21): 2623-2632.   DOI: 10.3969/j.issn.1004-132X.2022.21.011
    Abstract700)      PDF(pc) (2935KB)(542)       Save
     For the current problems for complex modeling and long development cycle of virtual entities such as industrial robots in digital twin workshop construction, a modular construction method of virtual-real drive systems for industrial robots in digital twin workshops was proposed, which divided the virtual-real drive systems into an interaction layer for setting model parameters and a control layer for designing configurations according to functional requirements, and then abstracted the physical industrial robots, etc. into a simulation model from coupling single functional atomic model. The modular and hierarchical approach to building virtual-reality drive systems may quickly and effectively realize the modeling of digital twin virtual entities such as industrial robots, as well as the simulation of industrial robots operating in virtual space and the simultaneous operation of virtual-reality.
    Reference | Related Articles | Metrics | Comments0
    A New Method for Optimal Distribution of Kinematic Accuracy of Mechanical Transmission Systems
    LI Jian, RAN Yan, ZHANG Genbao, WANG Yongqin
    China Mechanical Engineering    2022, 33 (09): 1034-1043.   DOI: 10.3969/j.issn.1004-132X.2022.09.003
    Abstract617)      PDF(pc) (2446KB)(525)       Save
    In order to distribute the kinematic accuracy of mechanical transmission system reasonably, a new method for optimal distribution of kinematic accuracy of mechanical transmission system was proposed with the meta-action theory. Firstly, the “function-kinematic-action” structural decomposition tree was used to decompose the mechanical system, and then the basic meta-action and meta-action chain were obtained. Secondly, taking the meta-action chain as research object, the formation mechanism of kinematic accuracy was analyzed, and the kinematic error transfer model was established. Considering cost factors and sensitivity factor of kinematic errors, cost function and robustness function were established. Then the optimal distribution model of the kinematic accuracy of the meta-action chain was established, and the kinematic errors of the meta-action were obtained. An engineering example proved the effectiveness of the method.
    Reference | Related Articles | Metrics | Comments0
    Research on Flexible Job-shop Scheduling Problems with Integrated Reinforcement Learning Algorithm
    ZHANG Kai, BI Li, JIAO Xiaogang
    China Mechanical Engineering    2023, 34 (02): 201-207.   DOI: 10.3969/j.issn.1004-132X.2023.02.010
    Abstract695)      PDF(pc) (4473KB)(523)       Save
    The flexible job-shop scheduling problems were transformed into a Markov decision process, and an algorithm D5QN integrated with 5 kinds of deep Q-network (DQN) optimizations was proposed. In the constructing of Markov process, a set of features was extracted to describe the states, and 3 sets of actions were designed by composite rules. The rewards were mapped by direct and indirect methods. The proposed algorithm was compared with the algorithms based on rules, meta-heuristic, and other reinforcement learning, which verifies the proposed algorithm may further decrease the calculating time, and have feasibility and effectiveness. 
    Reference | Related Articles | Metrics | Comments0
    Research on Accelerated Life Test Method of Harmonic Reducers
    WANG Qiao, DU Xuesong, SONG Chaosheng, ZHU Caichao, SUN Jianquan, LIAO Delin
    China Mechanical Engineering    2022, 33 (19): 2317-2324.   DOI: 10.3969/j.issn.1004-132X.2022.19.005
    Abstract818)      PDF(pc) (5879KB)(507)       Save
    At present, there was an urgent need for an accelerated life test method of harmonic reducer in engineering to replace the full life test in order to reduce the test cycles and costs. Based on the principles of accelerated life test, a constant stress accelerated life test program  was proposed based on the failure characteristics of the harmonic reducer. The flexible wheel that was most likely to fail in the harmonic reducers was taken as the object, and the definite failure judgment, acceleration stress, acceleration factor, method of accelerating model were pointed out. In the small sample test data processing, a more accurate Weibull distribution parameter estimation was obtained by using the maximum likelihood method and Markov Monte Carlo method. The experimental results of the prototype show that the scheme may effectively describe the life of the harmonic reducers. The reliability evaluation standard of the basic rated life is 62% higher than that of the evaluation standard of the median life. The life index of the harmonic reducers was effectively evaluated. The research results have certain engineering application values. 
    Reference | Related Articles | Metrics | Comments0
    Evolution of Concept of Machine Composition from the 19th Century to Modern Time
    ZHANG Ce, YANG Tingli, LIU Jianqin
    China Mechanical Engineering    2023, 34 (10): 1135-1139.   DOI: 10.3969/j.issn.1004-132X.2023.10.001
    Abstract534)      PDF(pc) (2405KB)(506)       Save
     With increasing of productivity and development of machines, the concept of “machine composition” also evolved. The requirements of modern society for machines were gradually increasing, and complex machines came from the transformation of traditional machines. Understanding the evolution of machines was a necessary process for the transformation of traditional machines. Marx first described the composition of machines in his Das Kapital, which coincided with the start of the Second Industrial Revolution. However, within only a few years, the control system joined a machine, and Marxs “concept of machine composition” began to be broken through. In the second half of the 20th century, in the Third Scientific and Technological Revolution, the concept of mechatronics emerged, and electronic technology, control technology and sensor technology were integrated into mechanical systems. The evolution processes of the concept of machine composition were explained through the history of the development of machines herein. By analyzing the evolution of the concept of machine composition, a more accurate definition of modern mechanical systems was put forword. It may enlighten people, increase their understanding of the machine itself, which has guiding significance for modern mechanical product designers. 
    Reference | Related Articles | Metrics | Comments0
    Research Progresses of Modeling and Optimization Methods for Multi Domain Behavior Processes of Human-Machine Environmental Systems#br#
    DONG Yuanfa, ZHANG Wenli, XIAO Renbin, TIAN Qihua, DU Xuan,
    China Mechanical Engineering    2022, 33 (08): 929-942.   DOI: 10.3969/j.issn.1004-132X.2022.08.007
    Abstract669)      PDF(pc) (1784KB)(504)       Save
     Due to the immaturity of intelligent technology in universality, robustness and security, intelligent interactive products were prone to “behavior conflict” due to the mismatch with user behavior patterns in intention expression, information processing, decision logic, interaction timing and action intensity. Unified modeling and optimization of multi domain behavior processes of human-machine environmental systems were the key to realize behavior characteristic regulation and forward design of intelligent interactive products. This paper systematically reviewed the research progresses of multi domain behavior process representation model, modeling language and tool, model validation and behavior process optimization of human-machine environmental systems from four dimensions:how to represent, what to represent, how to verify and how to optimize. The existing problems and limitations in this field were analyzed, and the future research focus and development trend were prospected. 
    Reference | Related Articles | Metrics | Comments0
    Research Status and Development Prospect of Machining Technology for Turbine Disc Slots
    DING Wenfeng, LI Benkai, FU Yucan, XU Jiuhua
    China Mechanical Engineering    2021, 32 (23): 2785-2798.   DOI: 10.3969/j.issn.1004-132X.2021.23.002
    Abstract627)      PDF(pc) (7644KB)(502)       Save
     For turbine disk slots of high-end power equipment such as aero engines and gas turbines, the machining technologies were analyzed from two aspects of mechanical machining (e.g., broaching, milling, grinding) and nontraditional machining (e.g., wire electric discharge machining and wire electrochemical machining), respectively. The development current situations were systematically explained from the viewpoints of design and application of tools, evaluation and control of machining quality. The important achievements of the research work in this field at home and abroad were also introduced. Finally, the development trends were generalized prospectively.
    Reference | Related Articles | Metrics | Comments0
    State-of-the-art on MQL Synergistic Technologies and Their Applications
    YANG Jianzhang, WANG Chengyong, YUAN Yaohui, YUAN Songmei, WANG Xibin, LIANG Cile, LI Weiqiu
    China Mechanical Engineering    2022, 33 (05): 506-528.   DOI: 10.3969/j.issn.1004-132X.2022.05.001
    Abstract785)      PDF(pc) (22261KB)(493)       Save
    MQL technology had the advantages of low cutting fluid consumption and high lubrication efficiency. However, there were more problems such as inadequate lubrication and low cooling performance under the specific conditions. MQL synergistic technology, such as cryogenic air or liquid carbon dioxide et.al. which combines the advantages of cooling and lubrication, might effectively solve the machining problems of difficult-to-cut materials. The latest research of principle, key devices and technology applications of various types of MQL synergistic technology were summarized. The performance of various devices and their parameter regulation characteristics were analyzed in details. Combining with the applications and the mechanism of MQL synergistic technology, the machinability in titanium alloy, nickel alloy, stainless steel and other difficult-to-cutting materials were analyzed. In addition, a sustainable analysis of various types of MQL synergistic technology was provided. The purpose is to provide technical support and reference for the engineering applications of clean cutting technologies.
    Reference | Related Articles | Metrics | Comments0
    Information Extraction Method of Part Machining Features Based on Image Deep Learning
    ZHANG Shengwen, ZHOU Xi, LI Bincheng, CHENG Dejun, CHEN Wendi
    China Mechanical Engineering    2022, 33 (03): 348-355.   DOI: 10.3969/j.issn.1004-132X.2022.03.011
    Abstract642)      PDF(pc) (5249KB)(489)       Save
    Aiming at the information integration problems for machining features of various part models based on model definition(MBD), a holographic information extraction method of machining features was proposed based on multi-level extraction architecture. Through the analysis of structural characteristics of parts, the machining features were classified with the simplest features that had manufacturing semantics and could not be split. Based on elaborating the extraction strategy, a machining feature classifier was built by deep learning image recognition technology. Based on the characteristics of MBD model information annotation, the machining feature topology structure was quickly located and extracted. A multi-view capture dimensionality reduction method was used to make the machining feature color image. And then a comprehensive analysis method for multi-angle image recognition of machining features was designed. Based on the query views, the annotation information of the MBD models was filtered, and a double-layer filtering extraction method for machining feature geometric information was constructed. Finally, a holographic information extraction software for machining features was established, and experimental results of key parts of marine diesel engines show the effectiveness of the method. 
    Reference | Related Articles | Metrics | Comments0
    Dynamics Modeling Method of Complex Rotors for Aero-turboshaft Engines
    WANG Longkai, WANG Ailun, YIN Yijun, JIN Miao, HENG Xing
    China Mechanical Engineering    2022, 33 (13): 1513-1520.   DOI: 10.3969/j.issn.1004-132X.2022.13.001
    Abstract591)      PDF(pc) (6544KB)(486)       Save
    To establish the dynamics model of complex rotor systems in turboshaft engines,the complex structure was modeled by substructure method on the basis of finite element method and piecewise linear fitting. After reducing the degrees of freedom of the systems,motion equations of the rotor systems were derived. The validity of the model was verified by theoretical analysis and experiments,and the vibration characteristics of the gas generator rotors were analyzed. The results show that the established model may significantly reduce the complexity of the overall systems and greatly shorten the calculation time under the premise of ensuring the solution accuracy.
    Reference | Related Articles | Metrics | Comments0
    Patent Data Driven Product Innovation Design Based on SAO
    LIN Wenguang, LIU Xiaodong, XIAO Renbin
    China Mechanical Engineering    2023, 34 (15): 1765-1777.   DOI: 10.3969/j.issn.1004-132X.2023.15.001
    Abstract419)      PDF(pc) (5241KB)(472)       Save
    The patent data-driven product innovation design method was proposed based on SAO using big data mining technology. Firstly, semantic dependency parsing was used to mine the SAO structure and interaction relationships among product components from patent text databases. Subsequently, a complex network knowledge model was constructed for product systems, and the constraint coefficients of components in the complex network were calculated by using structural hole theory to identify the innovative target components. Then, the semantic similarity coefficients of components were calculated using Word2Vec, and the functional similarity coefficients were calculated using SAO similarity algorithm. And the recommendation algorithm and combination matrix were integrated to achieve structural innovation, functional innovation, and functional optimization. Finally, a typical bathroom shower product was taken as an example to demonstrate the method in detail, which fully verifies the effectiveness and progressiveness of the method. 
    Reference | Related Articles | Metrics | Comments0
    Pivot Steering Control of Off-road Vehicles Driven by In-wheel Motors
    FU Xiang, LIU Zexuan, , LIU Daoyuan, LI Dongyuan,
    China Mechanical Engineering    2023, 34 (10): 1251-1259.   DOI: 10.3969/j.issn.1004-132X.2023.10.015
    Abstract374)      PDF(pc) (6293KB)(461)       Save
    In order to solve the problems of large minimum turning radius and inadequate steering maneuverability of Ackermann steering-based off-road vehicles, a road adaptive pivot steering control strategy was developed by taking advantages of the independent control of vehicle torque driven by in-wheel motors. A seven-degree-of-freedom pivot steering dynamics model was constructed to explain the evolution of the longitudinal and transverse coupled motion tire forces during pivot steering, and a quantitative model was established to quantify the pivot steering resistance moment and transverse sway moment with wheel slip rate and road adhesion coefficient. The desired trajectory of transverse sway angular velocity under different adhesion conditions was designed with steering power responsiveness as the optimization objective, and the safety threshold of each wheel slip rate was used as the stability constraint to reduce the steering center offset. The executive layer tracked the transverse angular velocity based on the model prediction algorithm, while the adaptive sliding mode controller was introduced to adjust the wheel slip rate to ensure the stability of the longitudinal and transverse motions. Simulation tests and real vehicle tests show that the developed pivot steering control strategy achieves accurate tracking of the desired pivot steering trajectory under high, medium and low adhesion surfaces, and limits the steering center offset to within 500 mm, which improves the pivot steering flexibility and lateral stability of the off-road vehicles and realizes "fast and stable" pivot steering. 
    Reference | Related Articles | Metrics | Comments0
    Review of Management for Mechanical Design and Manufacturing Discipline of NSFC in 2021
    China Mechanical Engineering    2022, 33 (06): 631-638.  
    Abstract522)      PDF(pc) (2554KB)(460)       Save
    The applications, evaluations and funding of projects for mechanical design and manufacturing discipline(division Ⅱ of engineering science) of the NSFC in 2021, as well as the research progresses and achievements of the executing and finished projects were reviewed. Specific measures of mechanical design and manufacturing discipline were illustrated, such as the reform of scientific fund, academic exchange and discussion, talent cultivation and evaluation of major research programs. Finally, a short prospects of the work in 2022 were introduced. 
    Reference | Related Articles | Metrics | Comments0
    Research on Backlash Elimination Method of Dual-motor Precision Transmission Mechanisms
    ZHENG Jieji, CHEN Lingyu, FAN Dapeng, XIE Xin
    China Mechanical Engineering    2022, 33 (22): 2684-2692.   DOI: 10.3969/j.issn.1004-132X.2022.22.005
    Abstract787)      PDF(pc) (6537KB)(457)       Save
    Aiming at the problems of large speed fluctuation and impact caused by the gaps between the two transmission chains of the dual-motor precision transmission mechanisms, the method of eliminating the gaps of the system was studied. First, a mechanism dynamics model including the meshing clearances between the output gear of the planetary reducer and the large ring gear was established. Through the model simulation, the influences of the gap size on the system characteristics were analyzed. Then, a compound anti-backlash method was proposed combining dynamic bias torque based on speed command and cross-coupling synchronous control based on differential negative feedback. An experimental device for dual-motor precision transmission mechanisms was built, and the verification experiments of the anti-backlash method were carried out. The experimental results show that in the case of closed-loop speed, the proposed compound anti-backlash method may ensure the complete elimination of the system gaps, and may improve the system speed tracking accuracy by 73.38%, and the shock amplitude in the start-up phase may be attenuated by 76.35%. The research results lay a certain foundation for the research of the high-precision control method of the double-motor precision transmission mechanisms, and provide a reference scheme for the elimination of the gaps in the gear transmission systems. 
    Reference | Related Articles | Metrics | Comments0
    Design and Steering Angle Control of Steering-by-Wire Hydraulic Systems for Multi-axle Vehicles
    LIU Jun, SHI Chaohuan, LIN Beiqing, HUANG He
    China Mechanical Engineering    2022, 33 (14): 1741-1750.   DOI: 10.3969/j.issn.1004-132X.2022.14.013
    Abstract585)      PDF(pc) (6050KB)(456)       Save
    The angle of the third axle steering wheel under the cargo box and the front steering wheel under the cab of multi-axle vehicles were required to conform to Ackerman principle for reducing rear steering wheel wear. The steering-by-wire hydraulic system was designed and the dynamics model was established based on a certain 8×2 four-axle heavy truck for controlling the steering angle of the third axle steering wheel. The sliding mode controller based on the exponential approach law was simulated in the typical operating conditions, and vehicle experiments were carried out. The experimental results show that the sliding mode controller based on the exponential approach law has faster response, shorter approaching time and overshoot duration, and smaller steady-state difference, compared with the sliding mode controller based on the proportional switching function and open-loop controller. Installation of the steering-by-wire hydraulic system based on the controller may significantly improve the steering wear resistance of the third axle tire, and improve the steering performance of the vehicles, compared with the mechanical hydraulic steering systems.
    Reference | Related Articles | Metrics | Comments0
    Tooth Surface Generation and Meshing Characteristics Analysis of Low-angle Face Gear Drives
    ZHOU Ruchuan, WU Wenmin, FENG Manman, GUO Hui, LIN Yanhu
    China Mechanical Engineering    2023, 34 (06): 631-640.   DOI: 10.3969/j.issn.1004-132X.2023.06.001
    Abstract673)      PDF(pc) (6100KB)(453)       Save
     Gear geometry and meshing properties of the low-angle face gear drives were investigated in order to enhance meshing capabilities of the gear drives with small shaft angle in helicopter transmission systems. The applied coordinate systems for generation of the low-angle face gear drive were established and the equation of the tooth surface of the small cone angel face gear was derived based on gear meshing theory. The tooth surface equation of a double-crowned cylindrical involute pinion was deduced by application of a generating worm.  The generated double-crowned pinion was then introduced into the low-angle face gear drive. The TCA was implemented and the influences of misalignments on the contact were researched. Stress analysis was performed for the purpose of evaluating the performance of the proposed face gear drives. And the stresses of the low-angle face gear drive were compared with the conical involute gear and cylindrical involute gear pair. The results show that the application of double-crowned pinion avoids edge contact, providing lower contact and bending stresses compared with the face-gear drive with a longitudinal modification pinion. Under the same conditions, the contact and bending stresses of the tapered face gear are 27% decrease than that of the conical involute gears. 
    Reference | Related Articles | Metrics | Comments0
    Human Factor Engineering for Human-Cyber-Physical System Collaboration in Intelligent Manufacturing
    YANG Xiaonan, FANG Haonan, LI Jianguo, XUE Qing
    China Mechanical Engineering    2023, 34 (14): 1710-1722,1740.   DOI: 10.3969/j.issn.1004-132X.2023.14.008
    Abstract649)      PDF(pc) (5740KB)(453)       Save
    The theoretical system of intelligent manufacturing for HCPS confirmed the central position of human in the intelligent manufacturing system. Starting from the demand of human-machine collaboration in the intelligent manufacturing system, the emphases of human factors in HCIM were discussed from three levels such as behavior, intention, and cognition, based on the theory of gulf. Focusing on virtual-real fusion scenarios, multimodal human-machine interaction, cognitive quantification and other methods, the importance of human factor engineering in promoting the integration of human-computer intelligence was expounded. Finally, research direction and development suggestions of human-centered intelligent manufacturing from the implementation of HCPS intelligent manufacturing systems were put forward.
    Reference | Related Articles | Metrics | Comments0
    Conceptual Design of Bio-inspired Jumping Mechanisms for Flapping-wing Aerial Vehicles
    MA Dongfu, SONG Bifeng, XUE Dong, XUAN Jianlin
    China Mechanical Engineering    2022, 33 (15): 1869-1875,1889.   DOI: 10.3969/j.issn.1004-132X.2022.15.013
    Abstract596)      PDF(pc) (3792KB)(443)       Save
    Aiming at the problems of lack of autonomous take-off and landing functions of flapping-wing aerial vehicles, which seriously affected the applicable scenarios, the design of bio-inspired jumping mechanisms was carried out. Firstly, the typical movement state of birds in the processes of jumping taking-off was analyzed. And according to the laws of movement changes of the hind limb skeleton structure, center of gravity, force and velocity in this process, the dynamic movement process of jumping take-off of the flapping-wing aerial vehicles was designed. Then, based on the skeleton anatomical structure of birds leg, a closed-chain five-bar geared bird-leg like jumping mechanism was designed. The kinematics equation of the mechanism was derived based on D-H method, and the dynamic equation of the mechanism in the take-off stage was established using Lagrange equation. Finally, the detailed structure design of the jumping mechanism was carried out, and then the simplified jumping model was simulated and analyzed by ADAMS. The simulation results show that, with the help of the designed bionic jumping mechanism, the velocity of mass center of the flapping-wing aerial vehicle system reaches 8.4 m/s, which is higher than the speed 7.9 m/s required by the “dove” aerial vehicle, so the mechanism has the possibility of jumping take-off.
    Reference | Related Articles | Metrics | Comments0
    A Bionic Bouncing Robot Design and Made Inspired by Locusts
    WANG Kaidi, CHEN Suifan, TANG Wei, QIN Kecheng, LI Qipeng, YANG Zhan, LIU Yang, ZOU Jun
    China Mechanical Engineering    2023, 34 (24): 2946-2951.   DOI: 10.3969/j.issn.1004-132X.2023.24.006
    Abstract411)      PDF(pc) (3896KB)(440)       Save
     In order to improve the mobility of small robots and increase the diversity of movement gait, a jumping robot imitating locust bouncing was designed based on the body structure and movement mechanism of locusts, and the main body was made by 3D printing. And for reproducing the locusts bouncing mechanism, a torsion spring was installed at the joints of the robot body to simulate the locusts SLP(semilunar energy storage) mechanism. When the robot met an obstacle, the torsion spring released the stored elastic potential energy and generated a ground reaction force, which realized the robots bouncing and thus crossed the obstacle. The robot might imitate the locusts jumping actions, and simulate the locusts flexibility to a certain extent. It was experimentally verified that the robot has good jumping performance, with a jumping distance of up to 100 cm and a jumping height of up to 120 cm which is about 15 times of the own length.
    Reference | Related Articles | Metrics | Comments0
    Study on Influences of Ni Content, Nitriding Hardening Depth, and Shot Peening on Bending Fatigue Performance of 42CrMo Gears
    WU Zhongrui, CHEN Difa, WU Jizhan, YANG Yudian, LIU Huaiju
    China Mechanical Engineering    2024, 35 (03): 394-404.   DOI: 10.3969/j.issn.1004-132X.2024.03.002
    Abstract206)      PDF(pc) (9652KB)(440)       Save
     Single tooth bending fatigue tests were conducted on 42CrMo gears with different combinations of Ni content, nitriding hardening depth, and shot peening. The effectiveness of different process combinations on improving the bending fatigue limit of gears was investigated, providing process guidance for gear fatigue resistance manufacturing. Additionally, the contribution of surface hardness, nitriding hardening depth, surface residual stress, and Ni content to the bending fatigue limit of gears with different process combinations was analyzed using the random forest algorithm. A multiple regression model considering surface hardness, nitriding hardening depth, surface residual stress, and Ni content was established to predict the bending fatigue limit of gears. Comparing the predicted values with experimental values, the maximum error is controlled within 7.80%, providing a theoretical basis for the rapid and low-cost assessment of gear bending fatigue limit in engineering applications.
    Reference | Related Articles | Metrics | Comments0
    Gear Fault Diagnosis Based on Deep Learning and Subdomain Adaptation
    JIE Zhenguo, WANG Xiyang, GONG Tingkai
    China Mechanical Engineering    2021, 32 (22): 2716-2723.   DOI: 10.3969/j.issn.1004-132X.2021.22.008
    Abstract551)      PDF(pc) (3700KB)(437)       Save
    Aiming at the insufficient labeled fault data in real cases, a method was proposed based on deep learning and subdomain adaptation. The domain-shared one dimensional CNN was first used to extract transferable features from the fault data. Then, the multi-kernel local maximum mean discrepancy was used to measure the distribution discrepancy of the learned transferable features relevant subdomains, and the measured distribution discrepancy was added to the objective function for training. Finally, the trained model was used to identify the health conditions of the target domain. The results show that the proposed method may achieve high accuracy in the case of target domain data without label.
    Reference | Related Articles | Metrics | Comments0