Most Download articles

    Published in last 1 year| In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

    Published in last 1 year
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Research Status and Development Trends of Large Wind Turbine Main Shaft Sliding Bearings
    ZHU Caichao1, ZHANG Ronghua1, SONG Chaoshen1, TAN Jianjun1, YANG Liang2
    China Mechanical Engineering    2024, 35 (10): 1711-1721.   DOI: 10.3969/j.issn.1004-132X.2024.10.001
    Abstract980)      PDF(pc) (4422KB)(475)       Save
    The pace of large wind turbine units was accelerating, and the reliability of core components was increasingly important for wind turbine operations. Sliding bearings had the advantages of high load capacity, long life, easy maintenance, scalability and small size, and they had advantages and great potential for the reliable replacement of wind turbine main bearings key components produced at home. The problems of main shaft rolling bearings in high-power wind turbines and the advantages of using sliding bearings on the main shaft were analyzed herein. The technical methods and application status of wind turbine main shaft sliding bearing design, materials, lubrication, and experimental verification were present in detail, and the existing problems of high-power wind turbine main shaft sliding bearings and future development trends were summarized. It is expected to provide reference for the digital design and industrial development of high-power wind turbine main bearings.
    Reference | Related Articles | Metrics | Comments0
    Visual Detection of Subsurface Corrosions in Ferromagnetic Metal Plates Using Pulsed Eddy Current Based on Dual-sensor Differential Mechanism
    WANG Jin1, LI Yong1, SU Bingjie1, GAO Wenlong1, XIANG Yi1, 2, LIU Zhengshuai1, CHEN Zhenmao1
    China Mechanical Engineering    2025, 36 (03): 381-390.   DOI: 10.3969/j.issn.1004-132X.2025.03.001
    Abstract314)      PDF(pc) (17686KB)(343)       Save
    A pulse eddy current visual detection method was proposed based on a dual-sensor differential mechanism for subsurface corrosions in ferromagnetic metal plates. In this method, a dual-sensor differential probe was used to pick up the pulsed eddy current testing signals, and the slope of the logarithmic curve along the falling edge of the testing signals and the peak value of the normalized differential signals were extracted as signal features, which were used for visual detection of defects of different sizes. Through simulation and experimental research, the correlation laws between the proposed signal features and the sizes of defects were established, and it is verified that the dual-sensor differential probe has the advantages of reducing noise interference and improving the detection sensitivity compared with traditional single-sensor probes. In addition, a method was proposed to fuse the two signal features, and the results indicate that the defect images using fused signal features have a higher image signal-to-noise ratio. The research method proposed herein provides an effective and reliable solution for the visual detection of subsurface corrosions in ferromagnetic metal plates.
    Reference | Related Articles | Metrics | Comments0
    Design of Twisting Climbing Wheeled Inspection Robot for Mining Wire Ropes
    TANG Chaoquan, TONG Binghang, TANG Wei, ZHANG Gang, WANG Siyuan, TANG Hongwei, LIU Bei, ZHOU Gongbo
    China Mechanical Engineering    2024, 35 (10): 1732-1739.   DOI: 10.3969/j.issn.1004-132X.2024.10.003
    Abstract491)      PDF(pc) (6279KB)(223)       Save
    In response to the unmanned inspection requirements of mining wire ropes, a rope-twisting climbing inspection robot was designed and developed. Compared to traditional axial climbing robots, which required approximately 91.5% of the driving force. When carrying a load of 3 kg, the robot may overcome obstacles with a height 0.6 mm higher than that of axial climbing robots. With an obstacle height of 3 mm, the maximum load capacity exceeds that of axial climbing robots by 0.4 kg. Climbing experiments were conducted under simulated deep mine conditions with wire rope vibrations. The results show that the climbing robots exhibite stable climbing performance when the wire ropes are stationary, achieving a maximum climbing speed of 8.25 m/min and capable of continuous climbing for 500 m. Under low-frequency large-amplitude vibration conditions, the climbing speed of the robot is higher than that when stationary, while under high-frequency small-amplitude vibration conditions, slight fluctuations in climbing speed are observed due to wire rope vibrations.
    Reference | Related Articles | Metrics | Comments0
    China Mechanical Engineering    2025, 36 (04): 1-.  
    Abstract278)      PDF(pc) (293186KB)(204)       Save
    Related Articles | Metrics | Comments0
    Research on Compound Wave Propulsion Performance Improvement for Bionic Fish Robots
    LUO Zirong1, XIA Minghai1, YIN Qian2, LU Zhongyue1, JIANG Tao1, ZHU Yiming1
    China Mechanical Engineering    2024, 35 (11): 1901-1908.   DOI: 10.3969/j.issn.1004-132X.2024.11.001
    Abstract454)      PDF(pc) (8473KB)(194)       Save
    Motivated by the profound impacts of longitudinal and transverse waves of earthquake, a novel underwater bionic propeller that utilized longitudinal and transverse compound wave patterns was proposed and designed. A kinematic model incorporating the composite waves was theoretically established, alongside the development of a physical prototype and testing platform. The propulsion performances of the propeller were systematically compared and analyzed through CFD simulations as well as prototype tests under varying amplitudes of longitudinal wave superposition. Simulation results show that both the thrust and velocity generated by the undulating fin may be significantly enhanced, with mean thrust increasing by 27.6% and peak thrust exceeding 200%. Experimental results reveal that under a frequency of 2 Hz with a longitudinal-wave amplitude of 20°, the steady-state average velocity achieved by the propeller reaches 0.761 m/s, which is approximately 14.7% greater than that of without longitudinal wave. This paper demonstrates that composite wave bionic fins exhibit superior thrust and velocity performance compared to single sinusoidal wave configurations, thereby offering an innovative propulsion mechanism for advancing high-performance bionic fish robots.
    Reference | Related Articles | Metrics | Comments0
    Design of Scale-changeable Pantograph Legs for Heavy-duty Robots
    SUO Zhe, LI Xiang, LIU Jianfeng, WANG Jixin
    China Mechanical Engineering    2025, 36 (02): 191-196.   DOI: 10.3969/j.issn.1004-132X.2025.02.001
    Abstract324)      PDF(pc) (7951KB)(187)       Save
    The motion characteristics of the 2 DOF(degree-of-freedom) scale-changeable pantograph leg mechanisms were analyzed, different designs for scale change were compared. A scale-changeable pantograph leg with a nonlinear length adjustment mechanisms was proposed. The length of the thigh and shank link could be adjusted with a single driver according to the nonlinear proportion relation. Thus, the scale could be changed while preserving the pantograph mechanism properties. The scale-changeable pantograph leg may change the scale without disassembling, adjust the foot working space and the carrying capacity of the robots.
    Reference | Related Articles | Metrics | Comments0
    State-of-the-art and Trend of High Loading Capacity Plastic Gear Drives
    LIU Huaiju, LU Zehua, ZHU Caichao
    China Mechanical Engineering    2025, 36 (01): 2-17.   DOI: 10.3969/j.issn.1004-132X.2025.01.001
    Abstract441)      PDF(pc) (15004KB)(169)       Save
    Focusing on the loading capacity and applications in power transmission of plastic gears, the failure modes and loading capacity under the current materials and technology levels were introduced. The strengthening measures for improving loading capacity of plastic gears were elaborated from the application of new materials, lubrication improvement, collaborative design, and so on. The applications and potential of plastic gears scenarios in power transmissions such as automobile engines, vehicle reducers, and aeroengine accessory gearboxes were introduced, which has important reference significance for promoting the development of high load plastic gear technology and applications.
    Reference | Related Articles | Metrics | Comments0
    Research Progresses on Reliability Analysis and Optimal Design of Automobile Structures
    ZHANG Lei1, 2, 3, SUN Xuetao1, 2, CHEN Jie1, 2, SUN Yuanbo3, GUO Jiajia1, 2, ZHENG Jie1, 2
    China Mechanical Engineering    2024, 35 (11): 1948-1962,1970.   DOI: 10.3969/j.issn.1004-132X.2024.11.006
    Abstract402)      PDF(pc) (2504KB)(158)       Save
    In order to study the reliability of automobile structures, the uncertainty of mechanical structure analysis and design was summarized, and the uncertainty of design variables and parameters of automobile structures was analyzed from three aspects: structural parameter uncertainty, material performance parameter uncertainty and load uncertainty. The research progresses of probabilistic reliability analysis and non-probabilistic reliability analysis methods were reviewed and summarized. The applications of reliability analysis method in automobile structures were listed. The mathematical model and algorithm of reliability were sorted out, and the applications of reliability optimization design in lightweight and crashworthiness of automobiles were studied, and the development trends of reliability analysis and optimization design of automobile structures were presented. 
    Reference | Related Articles | Metrics | Comments0
    Research Progresses for Machining Characteristics and Field-assisted Techniques of γ-TiAl Alloys
    FAN Tao1, 2, YAO Changfeng1, 2, TAN Liang1, 2, SHAN Chenwei1, 2, XIA Ziwen1, 2
    China Mechanical Engineering    2025, 36 (04): 636-645.   DOI: 10.3969/j.issn.1004-132X.2025.04.001
    Abstract1656)      PDF(pc) (25364KB)(147)       Save
    γ-TiAl alloys, due to their low density, high specific strength and excellent high-temperature oxidation resistance had broad application potentials in the aerospace fields. However, due to their high brittleness and low room-temperature plasticity, they were considered typical difficult-to-machine materials, with challenges such as high cutting forces, rapid tool wear and surface defects during the machining processes. In recent years, field-assisted machining technologies provided new solutions to these issues. The material properties, machining characteristics, and surface integrity of γ-TiAl alloys were systematically analyzed, with a focus on the research progresses of field-assisted machining technologies, including their applications in reducing cutting forces, extending tool life and improving surface quality. Additionally, the current research limitations and future development trends were sorted out, aiming to provide theoretical and technical references for the efficient machining of γ-TiAl alloys. 
    Reference | Related Articles | Metrics | Comments0
    Study on Absolute Linear Time-grid Displacement Sensors with  Multi-frequency Magnetic Field Coupling
    YANG Jisen1, 2, 3, YUAN Junsong1, 3, XIU Fu1, 3, LIU Jiacheng1, 3, ZHANG Xiaolong1, 3
    China Mechanical Engineering    2025, 36 (05): 889-897.   DOI: 10.3969/j.issn.1004-132X.2025.05.001
    Abstract387)      PDF(pc) (8864KB)(143)       Save
    Aiming at the problems of mutual crosstalk among magnetic fields affecting the measurement accuracy of the sensors and reducing the signal-to-noise ratio when the excitation frequency of two code channels of a dual-row planar magnetic field sensor was the same, a multi-frequency magnetic field coupled absolute linear time-grid displacement sensor design scheme was proposed, which achieved the solution to the problems of eliminating the crosstalk of the magnetic fields among the code channels while solving the absolute displacement. The sensor was divided into fixed scale and dynamic scale, both using double-layer alternating structure, fixed scale using two columns of incremental code channel combination, divided into fine and coarse machines, the pairs of poles of two rows of excitation coils were two integers of the reciprocal relation, the absolute displacement measurement was realized by using the pairs of poles within the displacement difference. Precision machine measurement channel and rough machine measurement channel were input  different frequencies of the excitation current signals at the same time,  the precision machine was input the 1 MHz high-frequency current signals, the high-frequency excitation current signals might effectively enhance the inductive signals, improve the signal-to-noise ratio of the electrical processing system. Through the method of outlier frequency reduction, the sensor resolution was improved, which effectively solved the problems that it were difficult to reconcile the signal-to-noise ratio enhancement of the signals by increasing the frequency of the excitation signals and the high resolution of the sensors. Theoretical validation and error analysis of the sensors were carried out through electromagnetic simulation analysis. Finally, the experimental platform was built to carry out prototype experiments, and the experimental results show that the absolute sensor structure with multi-frequency magnetic field coupling effectively eliminates the magnetic field crosstalk between the fine and coarse machines, and the signal-to-noise ratio of the sensors is improved, with measurement errors are less than ±17.34 μm in the measurement range of 140 mm. 
    Reference | Related Articles | Metrics | Comments0
    Research Progresses on Incremental EMF Technology for Thin-walled Components
    CHENG Xiao1, LI Rui2, ZOU Guisheng2, LIN Junfeng1, 3, YU Haiping1, 3
    China Mechanical Engineering    2024, 35 (12): 2092-2105.   DOI: 10.3969/j.issn.1004-132X.2024.12.001
    Abstract791)      PDF(pc) (12617KB)(143)       Save
    With the development of Chinas high-end manufacturing industries, the demands for thin-walled components in many industrial fields such as aerospace were increased dramatically. The high-speed forming characteristics, traditional EMF was successfully applied to the production of thin-walled components of some key lightweight materials. However, due to the limitations of forming coil and discharge equipment, it was difficult to process large-scale and complex structure parts. In the past decade, incremental EMF technology was developed and gradually applied to the large thin-wall components processing, where a large number of research results were emerged. On the basis of briefly describing the principle and characteristics of EMF technology, the existing incremental EMF technology was divided into two categories according to the processing form: incremental electromagnetic composite forming and incremental electromagnetic direct forming. The research status of each processes was expounded from the aspects of basic principle, technical scheme and application results. Thus the main problems existing in the incremental EMF technology were analyzed, then the future development prospects and research direction of the incremental EMF technology were prospected.
    Reference | Related Articles | Metrics | Comments0
    Research on Flexible Job-shop Scheduling Considering Constraints of Peak Power Constrained
    LI Yibing1, 2, CAO Yan1, GUO Jun1, 2, WANG Lei1, 2, LI Xixing3, SUN Libo4
    China Mechanical Engineering    2025, 36 (02): 280-293.   DOI: 10.3969/j.issn.1004-132X.2025.02.011
    Abstract166)      PDF(pc) (12926KB)(140)       Save
    Peak power constrained flexible job shop scheduling problem(PPCFJSP) model was established to address the challenges of increased work cycles and increased machine load in flexible job shop scheduling under the constraints of peak power in the workshops. The optimization objectives were to minimize the maximum completion time and the maximum machine loads, taking into account the constraints of peak power in the workshops. For better scheduling decisions, firstly, the problem was transformed into a Markov decision process, then, a scheduling framework combining offline training and online scheduling was designed for solving PPCFJSP. Secondly, a double dueling deep q-network based on priority experience replay(D3QNPER) algorithm was designed based on priority experience replay, and a ε- greedy descent strategy introducing noise was designed to improve the convergence speed of the algorithm, further enhance the solving ability and stability of the solution results. Finally, experimental and algorithmic comparative studies were conducted to verify the effectiveness of the model and algorithm.
    Reference | Related Articles | Metrics | Comments0
    Study on Low Wear Machining Method of High Volume Fraction SiCp/Al Composite Materials by ECM-mechanical Combined Machining Processes Method
    HE Bin, ZHOU Xingyu, LU Hongyu, ZHANG Junfei, DING Kai, LI Qilin, LEI Weining
    China Mechanical Engineering    2025, 36 (04): 753-759.   DOI: 10.3969/j.issn.1004-132X.2025.04.012
    Abstract244)      PDF(pc) (12862KB)(140)       Save
    To improve the problems of tool wear, poor surface quality and low machining efficiency of aluminum-based silicon carbide(SiCp/Al) composites with high volume fraction under conventional machining, an ECM-mechanical combined machining method was proposed, and the ECM-mechanical combined machining experiments of 60% volume fraction SiCp/Al composites were carried out. The results show that SiC particles are exposed on the surfaces with the removal of aluminum matrix. There is a certain depth of transition zone between the surface of the workpiece and the matrix after ECM, the aluminum matrix in the transition zone is locally removed, and the binding force of SiC particles is reduced. When the diamond grinding rod is used for machining the transition zone, the aluminum matrix adhesion phenomenon is not observed, the diamond grinding rod has almost no wear, and the surface damages are obviously reduced. The machinability of high volume fraction SiCp/Al composites may be improved by ECM-mechanical machining processes.
    Reference | Related Articles | Metrics | Comments0
    Influences of Strain Rate on Plastic Deformations and Martensitic Transformation Behaviors of 304 Stainless Steels
    ZHAN Lihua1, 2, ZHAO Shuai1, YANG Youliang1, 2, CHANG Zhilong3
    China Mechanical Engineering    2024, 35 (12): 2132-2138,2168.   DOI: 10.3969/j.issn.1004-132X.2024.12.005
    Abstract512)      PDF(pc) (5871KB)(139)       Save
    To investigate the plastic deformation behaviors and martensitic transformation rules of 0.5 mm thick 304 stainless steels at room temperature, uniaxial tensile tests were conducted at five different strain rates of 0.000 67 s-1, 0.002 s-1, 0.01 s-1, 0.1 s-1 and 1.0 s-1, with subsequent X-ray diffraction(XRD) analysis for phase analysis. The results reveal a notable increase in yield strength with rising strain rate, indicating strain rate strengthening effects. Additionally, due to plastic work converting into heat during tensile processes, martensitic transformation was inhibited, resulting in a slight tensile strength reduction. Below a true strain of 0.27, work hardening rates decrease under varying strain rates. However, beyond this threshold true strain, significant secondary hardening occurs under low strain rates, which is attributed to the internal martensitic transformation.To address this phenomenon, the Olson-Cohen equation was integrated into the traditional Johnson-Cook model to characterize secondary hardening during tensile processes across different strain rates. The improved Johnson-Cook model achieves high accuracy in predicting rheological stress changes, with deviations of 3.23%, 3.42%, 4.13%, 4.09%, and 5.14% respectively compared to experimental values, effectively capturing the secondary hardening stage at various strain rates.
    Reference | Related Articles | Metrics | Comments0
    Research on Geometric Parameter Constraints of Swing Roller Movable Tooth Transmission Systems
    WEI Rui1, JIN Herong1, 2, 3, YANG Zeyu1, CHEN Tao1, YI Yali1
    China Mechanical Engineering    2024, 35 (10): 1722-1731,1739.   DOI: 10.3969/j.issn.1004-132X.2024.10.002
    Abstract366)      PDF(pc) (9450KB)(136)       Save
    Aiming at the problems such as long dimensional chain and weak structure of key components for the traditional swing movable tooth transmission, a new type of swing roller movable tooth transmission configuration and the tooth profile design method and parameter selection strategy were proposed. The swing roller movable tooth transmission mechanism was equivalent treated, and the equivalent connecting rod vector transfer model was constructed by topological analysis. According to the principle of conjugate meshing, the conjugate tooth profile vector equations of wave generator and ring gear were derived. Based on the constraint conditions of avoiding motion interference and top cutting of tooth profiles, the selection strategies of swing coefficient and base circle radius of the wave generator were developed with the transmission pressure angle as the evaluation basis. The tooth profile design and performance analysis were carried out according to the optimized parameters and the two groups of comparison parameters. The results show that the designed swing roller movable teeth transmissions have continuous tooth profiles and are able to run without stalling. Under the same load conditions, the peak value of engagement force of the wave generator and movable teeth with the optimized parameters is 37.09% and 28.28% lower than that of the comparison groups, which verifies the effectiveness of the design strategy. The research may provide theoretical reference for the tooth profile design and parameter selection of swing roller movable teeth transmission.
    Reference | Related Articles | Metrics | Comments0
    Rolling Bearing Fault Diagnosis of Wind Turbines Based on Frequency Domain Group Sparse Model with Graph Regularization Constraints
    LI Jimeng, WANG Ze, SHI Qingxin, MENG Zong
    China Mechanical Engineering    2024, 35 (11): 1909-1919.   DOI: 10.3969/j.issn.1004-132X.2024.11.002
    Abstract1330)      PDF(pc) (11269KB)(135)       Save
    Due to effects of the non-stationary operations, noisy working environment and strong electromagnetic interference for the wind turbines, the fault impulses of rolling bearings were submerged by strong noise, and the weak features were difficult to accurately identify. To solve the above problems, a frequency domain group sparse model with graph regularization constraints was proposed, which might effectively extract fault features of rolling bearings without periodic prior knowledge. Firstly, vibration signals were converted into graph signals to construct the graph regularization constraints, and the structured information was utilized to guide the penalty strength to improve the accuracy of sparse reconstruction. Secondly, the frequency domain group sparse model with graph regularization constraints was constructed, the method was given to determine the shrinkage threshold of the in-group components, and the objective function was simplified with the proximal mapping to optimize the solution. Finally, the parameters of the model were optimized by using the constructed comprehensive index and the moth flame optimization algorithm, and rolling bearing faults were identified by the envelope spectrum analysis of the reconstructed signals in the time domain. Numerical simulation and experimental results demonstrate that the proposed method has good anti-noise performance and may effectively extract weak fault features of rolling bearings under strong noise interference.
    Reference | Related Articles | Metrics | Comments0
    Machine Learning and Finite Element Simulation and Experimentation for Springback Prediction of Al-Li Alloys
    HUI Shengmeng1, MAO Xiaobo4, ZHAN Lihua1, 2, 3
    China Mechanical Engineering    2024, 35 (12): 2114-2121.   DOI: 10.3969/j.issn.1004-132X.2024.12.003
    Abstract397)      PDF(pc) (4522KB)(125)       Save
    Creep aging tests were conducted on the 2195 Al-Li alloys under various stress conditions at temperatures of 180 ℃, 190 ℃, and 200 ℃ respectively. Constitutive equations were derived using MATLAB software and incorporated into the nonlinear finite element software MSC.Marc to build a finite element model for the creep aging forming of 2195 Al-Li alloy spade segments. The model utilized time, stress, and temperature as input parameters, with the springback radius being the critical output parameter. To enhance the accuracy and efficiency of predictions, a comparative analysis of various machine learning regression models was conducted, leading to the selection of the ridge regression model as the predictive tool, which facilitated the rapid and precise prediction of the springback radius under diverse processing conditions. The high predictive accuracy and practical utility of the model were validated through 1∶1 experimental verification, demonstrating a relative error of 0.9% between the experimental components springback profile and the target profile. 
    Reference | Related Articles | Metrics | Comments0
    Ultrasonic Vibration Softening Johnson-Cook Modeling and Validation of Thin Tube Curling Experiments
    SONG Pengfei1, 2, CAO Miaoyan1, 2, FU Min1, 2, CUI Yashuo1, 2, LI Yunfeng1, 2, LIU Zheng1, 2
    China Mechanical Engineering    2024, 35 (12): 2106-2113,2121.   DOI: 10.3969/j.issn.1004-132X.2024.12.002
    Abstract438)      PDF(pc) (6974KB)(118)       Save
    In order to accurately describe the deformation behaviors of lightweight thin-walled components during ultrasonic vibration-assisted forming, ultrasonic vibration normal excitation-assisted uniaxial tensile experiments were carried out with TU1 oxygen-free copper and 316L stainless steel. Considering the ultrasonic vibration softening effects, an ultrasonic vibration Johnson-Cook model was developed by introducing a new ultrasonic softening function. A subroutine was developed and embedded into finite elements for simulation, and was validated by comparison with unidirectional tensile and curling experiments. The results show that the numerical model may effectively capture the ultrasonic vibrational softening behaviors of the materials with an average absolute percentage error as low as 0.97%. Although different materials have different sensitivities to ultrasonic vibration, the ultrasonic softening rates all follow an Allometricl functional relationship with the ultrasonic energy field density.
    Reference | Related Articles | Metrics | Comments0
    Design and Research of Variable Instantaneous Center Exoskeletons Driven by Pneumatic Artificial Muscles
    LI Chaoyang1, LUO Tianhong2, MA Xiangyu2, FANG Shangchen1, WANG Ke3
    China Mechanical Engineering    2024, 35 (10): 1783-1792.   DOI: 10.3969/j.issn.1004-132X.2024.10.008
    Abstract378)      PDF(pc) (5557KB)(115)       Save
    Aiming at the problems of low matching between the existing lower limb exoskeleton structure and the body, a new variable instantaneous center artificial knee joint driven by pneumatic artificial muscles was proposed by introducing additional degrees of freedom on the existing anti-quadrilateral joints. Combined with the kinematics analyses of the variable instantaneous center exoskeleton, the instantaneous center trajectory equations were solved, and the particle swarm algorithm was used to optimize the design of the knee joint structures. At the same time, the PID controller was used to simulate and analyze the motions, and experimental research was carried out. The results show that the instantaneous center trajectory of the proposed new variable instantaneous center artificial knee joints has a better match with the ideal instantaneoust center trajectory of the human joints, which provides reference and empirical support for the optimal design of the human-machine compatible structures.
    Reference | Related Articles | Metrics | Comments0
    Development and Applications of Aero-engine Accessory Gearbox Gear Transmission Design and Analysis Softwares
    LIU Guiyuan1, WANG Zeng2, YANG Ziyi2, HU Mingzhu1, LIU Huaiju1
    China Mechanical Engineering    2024, 35 (11): 1938-1947.   DOI: 10.3969/j.issn.1004-132X.2024.11.005
    Abstract413)      PDF(pc) (12715KB)(112)       Save
    The accessory gearbox gear transmissions were pivotal components for power transmission of the aero-engine accessories. The configuration and structure design of the accessory gearbox transmissions for aero-engines were complex, involving many parameters of components and system. Traditional design methods based on empirical formulas and scattered software programs could not meet the more efficient design requirements of advanced aviation equipment for high load capacity, long service life, lightweight, high performance transmission systems. Therefore, a “configuration design—component design—system analysis—system optimization” method for aero-engine gear transmission design was established, and the aero-engine accessory gearbox gear transmission design and analysis softwares were developed based on the C++/Python. According to the design requirements, four configuration schemes were generated applying the software, and a coaxial multiple-output non-symmetric power split configuration scheme was selected by comparison. A multi-objective optimization model for the transmission system was developed based on the NSGA-Ⅱ algorithm. With lightweight and high load capacity as the optimization goals, a reduction of 15.81% in gear transmission weight and an improvement of 2.98% in weak gear transmission safety are achieved. This provides theoretical methods and software tools to the research of gear transmissions for new generations of advanced aviation equipment.
    Reference | Related Articles | Metrics | Comments0
    Effects of Forced Positioning&Clamping on Geometric and Physical Assembly Performances for Composite Structures and Collaborative Guarantee Strategies
    GUO Feiyan1, ZHANG Yongliang2, LIU Jialiang1, ZHANG Hui2
    China Mechanical Engineering    2025, 36 (04): 655-670.   DOI: 10.3969/j.issn.1004-132X.2025.04.002
    Abstract1543)      PDF(pc) (7015KB)(111)       Save
    The large-size & thin-walled aviation composite structures had low forming accuracy and huge in-plane warping deformation. The accumulation of assembly errors, unexpected geometric gaps and shape deviations were prone to occur at the joining areas. In engineering, passive reduction actions, such as applying local clamping forces was usually applied, but uneven internal stress distribution and even internal damages would be occurred, which affected the mechanical performances of the structures in service directly. Firstly, the principle of forced positioning clamping was explained, and the affection on geometric accuracy and mechanical properties of weak rigid composite parts was analyzed. Secondly, starting from the analysis of two main aspects, i.e. optimization on forced clamping process parameters before assembly, and flexible positioning force&position adjustment of fixtures during assembly, five key technologies were solved with detailed technical solutions, i.e. setting forced assembly force limits, reduction of geometric gaps, prediction of stress/damage evolution, reverse optimization of forced clamping process parameters, and precise measurement of assembly stress&damage. Then the active control of shape&force coupling and macro & micro collaborative guarantee in the clamping processes for assembly performance, could be achieved. Finally, for the composite assembly structures, from the perspective of practical engineering applications, the future working focus towards high assembly quality and efficient, and low-cost assembly goals were proposed.
    Reference | Related Articles | Metrics | Comments0
    Depth of Cut Control for Thin-walled Parts in Robotic Milling Based on FLADRC
    SHI Long, ZHOU Hexiang, LI Zhoulong
    China Mechanical Engineering    2025, 36 (04): 671-680.   DOI: 10.3969/j.issn.1004-132X.2025.04.003
    Abstract1098)      PDF(pc) (8675KB)(110)       Save
    Weakly rigid large thin-walled parts had large deformations and vibrations during robotic thinning machining, which led to a degradation of the surface quality of the workpieces and difficulties in ensuring the accuracy of the remaining wall thickness. To this end, a VCM-driven follower support head was used for vibration and deformation suppression, and a FLADRC based control strategy was proposed for depth of cut of robotic milling thin-walled parts. In order to verify the effectiveness of the control strategy, the system control models were firstly established based on the MATLAB/Simulink simulation and experimental platform, and the simulation analysis was carried out, then experimental verification was carried out on the thin-walled parts robotic milling experiment platform. Both of the simulation and experimental results show that the depth-of-cut control strategy based on the follower support head may significantly suppress the vibrations and deformations during the machining processes of thin-walled parts and effectively ensure the accuracy of the remaining wall thickness. In addition, compared with the traditional fuzzy PID control, the FLADRC has a better control effectiveness and exhibits higher robustness in the presence of external disturbances.
    Reference | Related Articles | Metrics | Comments0
    A Reliability Allocation Method Considering Distribution and Transmission Models for Mechanical Systems
    WANG Zhichao1, LIU Chao1, RAN Yan2, CHEN Yifan3, JIANG Dongxiang1, ZHANG Genbao2, 3
    China Mechanical Engineering    2025, 36 (06): 1143-1150.   DOI: 10.3969/j.issn.1004-132X.2025.06.001
    Abstract244)      PDF(pc) (1184KB)(110)       Save
    To address the problems of the allocation reliability of lower-level units being greater than that of the upper-level unit in the multi-layer structure reliability allocation of mechanical systems, a novel reliability allocation method was proposed. Firstly, the mechanical systems were divided into a system-function-motion-action(SFMA) hierarchy structure. Then, according to the hierarchy structure consisting of distribution and transmission models, the reliability allocation techniques were proposed by combining the minimum cost method and reliability function, and the reliability allocation models of the mechanical systems, function units, motion units, and sub-motion units were established from top to bottom. Finally, taking the gear grinding machine as an example, the feasibility and effectiveness of the proposed method were verified.
    Reference | Related Articles | Metrics | Comments0
    Optimal Design of Face-hobbed Hypoid Gear Meshing Efficiency in Drive Axles
    WANG Qin1, HE Di1, XUE Jianhua2, PENG Jin3, FAN Zijie1
    China Mechanical Engineering    2024, 35 (11): 1920-1927,1937.   DOI: 10.3969/j.issn.1004-132X.2024.11.003
    Abstract330)      PDF(pc) (5325KB)(110)       Save
    Based on the gear friction loaded tooth contact analysis(FLTCA) method, an optimal design method was proposed for the meshing efficiency of face-hobbed hypoid gears. Firstly, a method was employed to preset the peak-to-peak values of unloaded transmission errors and the positions of the contact zones, facilitating the modification design of the positive and negative tooth surfaces of face-hobbed hypoid gears. Then, building upon the modified tooth surface design, an optimization objective was set to maximize gear meshing efficiency under driving conditions. And the optimization analysis model was established by comprehensively considering factors such as the peak-to-peak values of gear pair loaded transmission errors, distribution of full-load contact pattern on both sides of the tooth surfaces and the maximum contact stresses. To enhance the solution speed of the optimization model, the Kriging surrogate model was employed in conjunction with a multi-island genetic algorithm to address and solve the optimization model. Finally, a case design and test validation were conducted on a commercial drive axle with a face-hobbed hypoid gear pair. The effectivenesses of the optimization method proposed were verified through unloaded contact pattern tests and whole-axle transmission efficiency tests.
    Reference | Related Articles | Metrics | Comments0
    Structure Optimization of Load Port Independent Double Spool Electro-hydraulic Valves
    CHEN Junxiang1, 2, QI Fanyu1, JIANG Hongda1, 2, KONG Xiangdong1, 2, JIN Zhenlin1, AI Chao1, 2
    China Mechanical Engineering    2024, 35 (10): 1747-1761.   DOI: 10.3969/j.issn.1004-132X.2024.10.005
    Abstract349)      PDF(pc) (10594KB)(109)       Save
    In order to study the influences of load port independent electro-hydraulic valve system parameters on the main valve fretting characteristics, a state space equation of electro-hydraulic valve systems was established based on the power bond graph theory, and the first-order sensitivity method was used to analyze the influences of system parameters on the main valve fretting characteristics. The pilot structure parameters of the feedback control systems were very important to the movement characteristics of the main valve, the dead zone width of the pilot stage, the form of the valve port and the matching coefficient of the inlet and return oil valve port were studied under the constraint conditions of no self-excited oscillation and the best damping ratio, the best match between the lead stage and the main stage was achieved. The results show that the main valve fretting characteristics are greatly affected by the friction force of the main valve core, the liquid capacity of the non-spring control chamber, the liquid capacity of the pipeline from the pilot valve inlet to the main valve control chamber(non-spring side) and the preload force of the main valve spring. While optimizing the above influencing parameters, the dead zone width of the pilot valve δ≤0.25 mm, the U-shaped valve port, and the matching coefficient of the inlet and return oil valve ports η=0.53, the overall performance of the system is effectively improved.
    Reference | Related Articles | Metrics | Comments0
    China Mechanical Engineering    2025, 36 (04): 0-.  
    Abstract190)      PDF(pc) (369KB)(109)       Save
    Related Articles | Metrics | Comments0
    Research on Station Optimization of Aircraft Assembly Laser Trackers Based on Digital Twins
    LI Hao1, JIAO Yanchao1, ZHANG Yuyan1, ZHANG Hao1, XING Hongwen2, WEN Xiaoyu1, WANG Haoqi1, YE Guoyong1, GUAN Xiao2
    China Mechanical Engineering    2024, 35 (11): 1986-1994.   DOI: 10.3969/j.issn.1004-132X.2024.11.010
    Abstract704)      PDF(pc) (4789KB)(108)       Save
     Due to the large size of aircraft parts and the complex distribution of tooling on the assembly site, the laser tracker had poor visibility. During the guided assembly or off-rack inspection, it was necessary to adjust the laser tracker station repeatedly, which seriously affected the measurement stability and efficiency. To solve this problem, a method was proposed for optimizing the station of a laser tracker in aircraft assembly based on digital twins. A measurement constrained model of laser trackers for aircraft assembly was established. The digital twin environment was established based on an accurate simulation of aircraft assembly site elements. Then, the optimization of laser tracker station placement was completed. Finally, a measurement simulation of the laser trackers in the digital twin environment was conducted to verify the feasibility of the genetic algorithm in solving the optimal station of the laser trackers. The results show that the coverage rate of the optimized laser tracker to the measuring points is increased by 110%, and the coincidence rate of the measuring points is increased from 11.7% to 55.5%, both the coverage rate and the coincidence rate of the measuring points of the laser trackers are significantly improved.
    Reference | Related Articles | Metrics | Comments0
    Low Carbon and High Quality Modeling and Processing Parameter Optimization of CNC Milling Machines
    LI Zeya1, LUO Min1, ZHANG Chaoyong2, XU Jinyu1
    China Mechanical Engineering    2024, 35 (10): 1845-1851.   DOI: 10.3969/j.issn.1004-132X.2024.10.014
    Abstract345)      PDF(pc) (1871KB)(103)       Save
     Aiming at the problems of high carbon emission efficiency and poor surface quality caused by using unreasonable processing parameters during the working processes of CNC milling machines, an optimization method of CNC milling machine processing parameters oriented to low carbon and high quality was proposed. Initially, carbon emission factors in the milling processes were analyzed, and target functions of carbon emission efficiency, surface roughness, and processing time were defined. Prediction models for carbon emission efficiency and surface roughness for CNC milling machines were subsequently established, utilizing the support vector regression improved by grey wolf optimizer. Then, with spindle speed, feed rate, and cutting width designated as optimization variables, an improved egret swarm optimization algorithm was applied to optimize the cutting parameters. This resulted in obtaining Pareto front solutions for processing parameters that were low in carbon emissions, high in quality and efficient. Suitable processing parameters were selected using the EW-TOPSIS method. Finally, an experimental platform for monitoring carbon emissions in CNC milling machines was established, and the feasibility and validity of the proposed method were verified by the experimental results.
    Reference | Related Articles | Metrics | Comments0
    Precise Regulation of Differential Pressures at Port of Load-sensitive Multi-way Valves Based on ADRC Algorithm
    LEI Xingmao1, DING Haigang1, 2, WANG Simin3, YANG Chengcheng1, PANG Zhizhen1
    China Mechanical Engineering    2025, 36 (05): 954-962,973.   DOI: 10.3969/j.issn.1004-132X.2025.05.007
    Abstract166)      PDF(pc) (9511KB)(103)       Save
     Load-sensitive multi-way valve was the core component for the hydraulic system of construction machinery, the pressure compensator was used to keep the differential pressure of the valve ports constant, but the differential pressure was susceptible to the spool opening and load changes, resulting in low accuracy of the main valve flow rate control.Therefore, a new type of load-sensitive multi-way valve differential pressure continuous control method was proposed, a proportional solenoid was used to push the spools of the compensator valves, and ADRC algorithm was used to control the proportional solenoid thrusts and realize the closed-loop control of differential pressures of the main valves, so as to accurately control the flow rate.Firstly, the working principle of the system was introduced and a mathematical model was established, then a simulation model was established based on AMESim-MATLAB joint simulation platform, and a test bench was built for experimental validation, the characteristics of the valve differential pressure maintenance and the main valve flow rate regulation were analyzed under the conditions of load changes and main valve opening degree changes. The results show that compared with the load changes, the changes of the main valve opening degree have a greater impact on the  differential pressures. A new type of valve port differential pressure control structure and method may accurately control the load-sensitive multi-way valve differential pressures, so as to achieve the effectiveness of precise control of the flow rate, and may actively regulate the differential pressures without changing the main valve opening degree, so as to achieve the flow rate for the further regulation.
    Reference | Related Articles | Metrics | Comments0
    Thread Extension Stress Analysis of Bolts under Pre-tensioning Conditions
    GUAN Jiaoyue1, GAO Yuan1, AI Yanting1, TIAN Jing1, YAO Yudong2
    China Mechanical Engineering    2025, 36 (05): 923-932.   DOI: 10.3969/j.issn.1004-132X.2025.05.004
    Abstract275)      PDF(pc) (7649KB)(100)       Save
     It was difficult to accurately determine the thread stresses on the bolts under pre-tensionsing conditions, which might lead to strength fracture and premature loosening of the threads, and the reliability of the bolt joints was compromised. Currently, the contact state of the thread surfaces was usually described by stresses under an absolute coordinate system. However, the simulated stress direction was at an angle to the actual thread surface. The analysis results were not intuitive. Therefore, a thread mathematical model was derived and the extended stress analysis method of thread contact surfaces was proposed. Then, the finite element model of bolt joints was established for the structural characteristics of bolts. And the accuracy of the model was verified by tests. Finally, the extended stress analysis method was applied to study the thread surface stress and the distribution characteristics of bolts. The results show that the maximum error between the simulated preload and the testing preload is only 5.78%, where the accuracy of the simulation model is demonstrated. The extension stress analysis method may reflect the continuity and monotonicity of the stress distribution on the thread surfaces, and the method also reflects the optimal preload. The decreasing rate of the stress on the same layer thread is inversely proportional to the stress. From the stress analysis, the reason why the stresses on the thread are mainly concentrated in the first three turns is illustrated. The thread extension stress analysis method proposed herein is more intuitive and accurate. The paper may provide theoretical support for the anti-loosening analysis and reliability analysis of bolts.
    Reference | Related Articles | Metrics | Comments0
    China Mechanical Engineering    2024, 35 (12): 1-.  
    Abstract147)      PDF(pc) (246695KB)(100)       Save
    Related Articles | Metrics | Comments0
    A Robot Stiffness Identification Method Considering Weakly Rigid Joint Transmission Chain Structures and Flexible Rod Structures
    GUO Wanjin1, 2, 3, 4, LI Ru1, WANG Libin1, HAO Qinlei1, CAO Chuqing2, ZHAO Lijun2, 4
    China Mechanical Engineering    2025, 36 (05): 974-985.   DOI: 10.3969/j.issn.1004-132X.2025.05.009
    Abstract165)      PDF(pc) (7073KB)(96)       Save
    To solve the stiffness identification problem for a 3T2R highly dexterous robot with weakly rigid joint transmission chain structures and flexible rod structures, a robot stiffness identification method was proposed. Firstly, the structural characteristics of the compact and cost-effective hybrid robot configuration design and the motion characteristics for adjusting the high dexterity of operational postures were analyzed. The robot Jacobian matrix was constructed, and the end deformation model of the robot was established to analyze the influences of weakly rigid joint transmission chain structures and flexible rod structures on the robot end deformations. Then, considering the effects of weakly rigid joint transmission chain structures and flexible rod structures, along with the robotic structural characteristics of weak rigidity and large deformation, robot joint stiffness identification was carried out,and the variable stiffness modeling was completed for the mobile joint 3. Experimental results indicate that the proposed method increases the stiffness of joints 3, joint 4 and 5 by 146.59%, 30.18% and 36.07% respectively, compared to conventional stiffness identification methods. The error rates between the measured and theoretical calculation values of the overall end deformations are in 4%~6% at six selected robot poses. The capability of the proposed robot stiffness identification method was verified.
    Reference | Related Articles | Metrics | Comments0
    Design of Jig and Fixture for Machining Precision Forged Blade Tenons of Aeroengine
    ZHANG Shen1, LIANG Jiawei2, WU Dongbo3, WANG Hui4, ZHAO Bing1, XU Lijun5, ZHOU Fen5
    China Mechanical Engineering    2025, 36 (04): 703-714.   DOI: 10.3969/j.issn.1004-132X.2025.04.007
    Abstract1142)      PDF(pc) (9510KB)(95)       Save
    Precision forged blades of aeroengine were a typical thin-walled parts with complex curved surface. When milling the blade tenons, it was difficult to locate and easy to produce deformations and vibrations. Aiming at the above problems, a design method of multi-point clamping fixture for precision forged blades was proposed, and a low stress hard clamping fixture was designed. Static analysis was used to optimize the clamping position, select the coping element materials and optimize the clamping method. The effectiveness of the fixture was tested by modal tests and vibration tests. The results show that the low-band amplitude of the system is reduced by 50%, the high-band amplitude by 75%, the first-order resonance frequency is increased from 210 Hz to 402 Hz, the damping ratio under the peak value is increased from 17.4% to 25.9%, the effective value of vibration displacement signals is reduced by 35%, and the machining error margin is reduced by 59%.
    Reference | Related Articles | Metrics | Comments0
    Simulation and Experimental Study of Temperature for Polishing Aero-engine Blades with Abrasive Cloth Wheel#br#
    #br#
    XIAN Chao1, 3, XIN Hongmin2, 3, DAI Hui2, CHENG Qingsi2
    China Mechanical Engineering    2025, 36 (04): 802-810.   DOI: 10.3969/j.issn.1004-132X.2025.04.017
    Abstract203)      PDF(pc) (9909KB)(95)       Save
    ANSYS software was used to simulate the instantaneous temperature fields in the polishing processes with abrasive cloth wheel using a rectangular heat source loading method. The temperature distribution on the blade surfaces and along the blade thickness direction in the polishing processes was studied, and the influences of processing parameters on the polishing temperature was explored. The results show that as the polishing process progresses, the polishing temperature distribution gradually stabilizes. When the polishing temperature stabilizes, the temperature values of the machined parts of the blade at different depths tend to be consistent, while the temperature of the machining parts decreases continuously along the depth direction; the polishing temperature gradient gradually decreases from the contact area being machined to the machined area; the polishing temperature increases with the increase of spindle speed, the effects of feed speed on the polishing temperature are not significant and the polishing temperature is positively correlated with the tangential polishing forces; the deviation rates between the measured and the simulated temperature values are not more than 10%, indicating that the good consistency and high accuracy of the simulation.
    Reference | Related Articles | Metrics | Comments0
    Design and Test Analysis of Flexible Joint Elastic Components
    LI Qi, GAO Hong
    China Mechanical Engineering    2024, 35 (10): 1815-1823,1844.   DOI: 10.3969/j.issn.1004-132X.2024.10.011
    Abstract349)      PDF(pc) (9047KB)(95)       Save
    A method for designing elastic components for flexible joints was designed, the design concept and design approach of the cross spring sheet-type elastic components was proposed. Firstly, the structure composition of the flexible joints was planned, the mechanics models of elastic components were established based on beam constraint conditions and constitutive relationships, the specific items of the flexibility matrix and stiffness matrix were determined, and the dynamics modeling of the motion end of the flexible joints was performed simultaneously. Next, instances of the elastic components was designed, and the design was validated through finite element analysis, the modal frequencies and mode displacement of the flexible joints during motion were simulated. Finally, an experimental system was set up to test the designed instances of the elastic components, and the rotational stiffness was calculated. Through cross-validation and analysis of three sets of data samples, the results show good consistency between the theoretical, simulated, and experimental values of the designed elastic components, with a maximum error of 7.59% in the first set, 4.32% in the second set, and 6.70% in the third set. This indicats the feasibility of designed elastic components using beam constraint theory and constitutive relationships. The proposed elastic joint elastic components are versatile and may be applied to articulated robotic arms and to rehabilitation robots and bionic robots, providing a new approach to the design of flexible joints for robots.
    Reference | Related Articles | Metrics | Comments0
    Reseach on Improvement of Creeping Phenomenon of Sliding Guideways by Composite Lubrication Texture
    FAN Yujie, CHEN Yuzhe, HAO Mengjie, WANG Suyang, DU Yuchen, XIA Jing, GUAN Xiaoyan
    China Mechanical Engineering    2024, 35 (10): 1740-1746,1761.   DOI: 10.3969/j.issn.1004-132X.2024.10.004
    Abstract279)      PDF(pc) (7624KB)(93)       Save
    The creeping phenomenon of sliding guideways at low speed and heavy load seriously affected the machining accuracy of the machine tools. In order to improve the creeping phenomenon of the sliding guideways, the design of composite lubrication structure on the surfaces of sliding guideways and the characterization of friction force in stages were studied. The composite lubricating micro-texture was prepared by high temperature and high-pressure mosaic method based on the laser ablation micro-texture. The characterization methods of friction force in stages were proposed by friction tests. The influences of different composite lubricating structures on the friction characteristic parameters of each stage were explored. The theoretical models of the composite lubricating structures to improve the creeping phenomenon were established, and the composite lubricating structures with the best performance to suppress the creeping phenomenon were found. The results show that the surface micro-texture only affects the severe stick-slip and climb stages of friction force, while the composite lubrication texture has a significant effect on the entire start-up stage. The multi-stage composite lubrication texture(SF-3) with the combination of sinusoidal grooves and hexagonal pits filled with molybdenum disulfide (MoS2) was the most effective in improving the surface contact conditions and suppressing the creep phenomenon. Compared to the smooth surface(SS) sample, the creep time of the SF-3 sample is reduced by 72%, the instability force in the first stage is reduced by 69.83%, and the friction jump force in the second and third stages is reduced by 75.91% and 80.17%, respectively. 
    Reference | Related Articles | Metrics | Comments0
    Deep Reinforcement Learning Method for Flexible Job Shop Scheduling
    ZHU Zhengyu1, GUO Jutao2, LYU Youlong3, ZUO Liling1, ZHANG Jie3
    China Mechanical Engineering    2024, 35 (11): 2007-2014,2034.   DOI: 10.3969/j.issn.1004-132X.2024.11.012
    Abstract385)      PDF(pc) (4565KB)(91)       Save
    Aiming at the flexible job shop scheduling problems under the mode of multi variety and small batch production, an intelligent scheduling method was proposed to minimize the total tardiness of orders based on combination rules and reinforcement learning. Transforming the flexible job shop production scheduling problem into a Markov decision process, according to the characteristics and optimization objectives of the problems, seven features were used to represent the workshop states, and six combination rules were designed as an action library. The problem was solved by using the improved DQN algorithm. Taking the aerospace structural parts machining workshop as a case study, the feasibility and effectiveness of the proposed method in shortening task delivery time are verified by comparing with other common rule-based methods in five different scale calculation examples.
    Reference | Related Articles | Metrics | Comments0
    China Mechanical Engineering    2024, 35 (12): 0-.  
    Abstract144)      PDF(pc) (362KB)(91)       Save
    Related Articles | Metrics | Comments0
    Lightweight Design of Concrete Pump Truck Boom Pins Based on Multi-fidelity Surrogate Model
    LI Peng1, 2, 3, 4, LI Mengcong1, 4, XIAO Libo2, 3, WANG Yitang1, 4, SONG Xueguan1, 4, YANG Ling5
    China Mechanical Engineering    2025, 36 (04): 821-829.   DOI: 10.3969/j.issn.1004-132X.2025.04.019
    Abstract217)      PDF(pc) (9820KB)(88)       Save
    As a key connecting and supporting component in a concrete pump truck boom system, how to reduce the mass of the pin shafts was a noteworthy issue in boom design. A parameterized finite element model of the hollow dumbbell pin shafts was constructed based on control parameters. Then, a more accurate feature mapping based MFS(FM-MFS) model was established through the mutual disturbance of high and low fidelity models and the reasonable allocation of high and low fidelity data. Genetic algorithm was used for optimization to obtain the optimal design scheme for the hollow dumbbell pins based on this surrogate model, achieving a weight reduction of 36%. Through theoretical, simulation, and experimental verification, it is shown that the hollow dumbbell pin shafts constructed based on the optimal parameters of the surrogate model may achieve lightweight and material consumption savings while still ensuring the physical and mechanical properties, which provides data support and reference for further applications in the future. 
    Reference | Related Articles | Metrics | Comments0
    Numerical and Experimental Study on Effects of Rivet Crack on Mechanics Properties of Self-piercing Riveted Joints
    CHENG Aiguo1, WANG Chao1, YU Wanyuan2, HE Zhicheng1
    China Mechanical Engineering    2025, 36 (02): 197-208.   DOI: 10.3969/j.issn.1004-132X.2025.02.002
    Abstract271)      PDF(pc) (22151KB)(83)       Save
    The rivet cracks generated in joining high-strength steels using SPR were simulated through finite element model, and the effects of rivet crack depth, crack position, and crack quantity on the mechanics properties of steel-aluminum SPR joints were systematically investigated. Firstly, a 2D axisymmetric numerical model was established using LS-DYNA software to simulate the SPR processes, and the accuracy of the numerical model was validated by comparing experimental and simulated joint cross-profiles. Secondly, a 2D-3D finite element model generation method was employed to establish a 3D numerical model of SPR joints to simulate the mechanics properties of SPR joints. The fracture parameters of rivets were calibrated using LS-OPT software. The developed 3D numerical model of SPR joints could accurately predict the mechanics properties of SPR joints. The results of parametric study indicate that the mechanics properties of the SPR joints decrease with increasing crack depth and gradually increase as the external crack position moves downward, but the internal crack has minimal influence. When multiple cracks exist in the rivets, the mechanics properties of the joints depend on the weakest cracks and are independent of the quantity.
    Reference | Related Articles | Metrics | Comments0