[1]陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 21(2):175-189.
CHEN Xuefeng, GUO Yanjie, XU Caibin, et al. Review of Fault Diagnosis and Health Monitoring for Wind Power Equipment[J]. China Mechanical Engineering, 2020, 21(2):175-189.
[2]张龙, 蔡秉桓, 熊国良, 等. 滚动轴承自适应特征提取的包络谱多点峭度多级降噪方法[J]. 中国机械工程, 2021, 32(24):2950-2959.
ZHANG Long, CAI Binghuan, XIONG Guoliang, et al. Multi-stage Noise Reduction Method with ESMK for Adaptive Feature Extraction of Rolling Bearings[J]. China Mechanical Engineering, 2021, 32(24):2950-2959.
[3]张守京, 慎明俊, 杨静雯, 等. 改进的共振稀疏分解方法及其在滚动轴承复合故障诊断中的应用[J]. 中国机械工程, 2022, 33(14):1697-1706.
ZHANG Shoujing, SHEN Mingjun, YANG Jingwen, et al. Improved RSSD and Its Application to Composite Fault Diagnosis of Rolling Bearings[J]. China Mechanical Engineering, 2022, 33(14):1697-1706.
[4]CHEN Xihui, CHENG Gang, LI Hongyu, et al. Fault Identification Method for Planetary Gear Based on DT-CWT Threshold Denoising and LE[J]. Journal of Mechanical Science and Technology, 2017, 31:1035-1047.
[5]OU Lu, YU Dejie, YANG Hanjian. A New Rolling Bearing Fault Diagnosis Method Based on GFT Impulse Component Extraction[J]. Mechanical Systems and Signal Processing, 2016, 81:162-182.
[6]WANG Xianbo, YANG Zhixin, YAN Xiaoan. Novel Particle Swarm Optimization-based Variational Mode Decomposition Method for the Fault Diagnosis of Complex Rotating Machinery[J]. IEEE/ASME Transactions on Mechatronics, 2018, 21:68-79.
[7]OLSHAUSEN B A, FIELD D J. Emergence of Simple-cell Receptive Field Properties by Learning a Sparse Code for Natural Images[J]. Nature, 1996, 381:607-609.
[8]FENG Zhipeng, ZHOU Yakai, ZUO Mingjian, et al. Atomic Decomposition and Sparse Representation for Complex Signal Analysis in Machinery Fault Diagnosis:a Review with Examples[J]. Measurement, 2017, 103:106-132.
[9]WANG S B, SELESNICK I, CAI G G, et al. Nonconvex Sparse Regularization and Convex Optimization for Bearing Fault Diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10):7332-7342.
[10]THANOU D, SHUMAN D, FROSSARD P. Learning Parametric Dictionaries for Signals on Graphs[J]. IEEE Transactions on Signal Processing , 2014, 62(15):3849-3862.
[11]王华庆, 刘泽源, 卢威, 等. 频域组稀疏滚动轴承特征提取方法[J]. 振动工程学报, 2022, 35(5):1242-1249.
WANG Huaqing, LIU Zeyuan, LU Wei, et al. Frequency Domain Sparse Rolling Bearing Feature Extraction Method[J]. Journal of Vibration Engineering, 2022, 35(5):1242-1249.
[12]LI Zhixin, LI Jimeng, DING Wanmeng, et al. A Sparsity-enhanced Periodic OGS Model for Weak Feature Extraction of Rolling Bearing Faults[J]. Mechanical Systems and Signal Processing, 2022, 169:108733.
[13]YAO Renhe, JIANG Hongkai, LI Xingqiu, et al. Bearing Incipient Fault Feature Extraction Using Adaptive Period Matching Enhanced Sparse Representation[J]. Mechanical Systems and Signal Processing, 2022, 166:108467.
[14]DIWU Zhenkun, CAO Hongrui, WANG Lei, et al.Collaborative Double Sparse Period-group Lasso for Bearing Fault Diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70:1-10.
[15]WANG Baoxiang, LIAO Yuhe, DING Chuancang, et al. Periodical Sparse Low-rank Matrix Estimation Algorithm for Fault Detection of Rolling Bearings[J]. ISA Transactions, 2022, 101:366-378.
[16]ZHENG Kai, YANG Dewei, ZHANG Bin, et al. A Group Sparse Representation Method in Frequency Domain with Adaptive Parameters Optimization of Detecting Incipient Rolling Bearing Fault[J]. Journal of Sound and Vibration, 2019, 462:114931.
[17]LI Hao, ZHANG Yuanshu, MA Yong, et al. Pairwise Elastic Net Representation-based Classification for Hyperspectral Image Classification[J]. Entropy, 2021:23(8):956.
[18]CHRISTENSEN O. An Introduction to Frames and Riesz Bases[M]. Cambridge:Birkhuser, 2016:165-181.
[19]BAYRAM I·, BULEK S. A Penalty Function Promoting Sparsity within and Across Groups[J]. IEEE Transactions on Signal Processing, 2017, 65:4238-4251.
[20]覃爱娜, 戴亮, 李飞, 等. 基于改进小波阈值函数的语音增强算法研究[J]. 湖南大学学报:自然科学报, 2015, 42(4):136-140.
QIN Aina, DAI Liang, LI Fei. Research on Speech Enhancement Algorithm Based on Improved Wavelet Threshold Function[J]. Journal of Hunan University:Nature Science, 2015, 42(4):136-140.
[21]MIRJALILI S. Moth-flame Optimization Algorithm:a Novel Nature-inspired Heuristic Paradigm[J]. Knowledge-Based Systems, 2015, 89:228-249.
[22]MIAO Yonghao, ZHAO Ming, LIN Jing. Improvement of Kurtosis-guided-grams via Gini Index for Bearing Fault Feature Identification[J]. Measurement Science and Technology, 2017, 28(12):125001.
[23]OTOOLE J M, TEMKO A, STEVENSON N. Assessing Instantaneous Energy in the EEG:a Non-negative, Frequency-weighted Energy Operator[C]∥Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering. Chicago, 2014:3288-3291.
[24]雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16):1-6.
LEI Yaguo, HAN Tianyu, WANG Biao, et al. XJTU-SY Rolling Element Bearing Accelerated Life Test Datasets:a Tutorial[J]. Journal of Mechanical Engineering, 2019, 55(16):1-6.
[25]ANTONI J. Fast Computation of the Kurtogram for the Detection of Transient Faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1):108-124.
[26]CHENG Xiao, MAO Jiandong, LI Juan, et al. An EEMD-SVD-LWT Algorithm for Denoising a Lidar Signal[J]. Measurement, 2021, 168:108405.
|