To solve the problems of excessive pressure fluctuations in the simulation environment of high gravity centrifugal environment without an external oil source, the factors causing pressure fluctuations were analyzed, and experimental tests were conducted on each factor. Based on the analysis of each factor, an accumulator stabilization scheme was proposed, and the effects of accumulator working parameters, working pressure, and working medium parameters on stabilization performance were compared under different deformation conditions of specimens through supergravity experiments. The experimental test results show that within the temperature range of 36~42.5 ℃, the pressure fluctuation of oil caused by temperature changes is less than 4%. The deformation of the specimen is the main factor affecting pressure fluctuations, with a pressure fluctuation ratio of up to 47% caused by a deformation of 1 mm in the samples. The fluctuation ratio of the accumulator during pressure stabilization under supergravity is proportional to the working pressure and the deformation of the specimen. The use of two 300 mL gas volume accumulators may achieve the requirement of less than 10% internal pressure fluctuation of 20 MPa, which is consistent with theoretical calculations. The test provides technical support for controlling pressure fluctuations in high-temperature and high-pressure devices under supergravity environments.