China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (10): 2359-2368.DOI: 10.3969/j.issn.1004-132X.2025.10.025
Chunhua HE1(
), Jinhui YAO1, Lei NIE2, Guanglan LIAO1, Tielin SHI1, Zhiyong LIU1(
)
Received:2024-07-17
Online:2025-10-25
Published:2025-11-05
Contact:
Zhiyong LIU
何春华1(
), 姚金辉1, 聂磊2, 廖广兰1, 史铁林1, 刘智勇1(
)
通讯作者:
刘智勇
作者简介:何春华,男,1993年生,博士研究生。研究方向为声表面波液滴微流控、微纳加工技术。E-mail:hechunhua@hust.edu.cn基金资助:CLC Number:
Chunhua HE, Jinhui YAO, Lei NIE, Guanglan LIAO, Tielin SHI, Zhiyong LIU. Design and Applications of Droplet-based Digital PCR Microfluidic Chip with Integrated Fluid and Temperature Control[J]. China Mechanical Engineering, 2025, 36(10): 2359-2368.
何春华, 姚金辉, 聂磊, 廖广兰, 史铁林, 刘智勇. 集成流体与温度控制的液滴型数字PCR微流控芯片设计与应用[J]. 中国机械工程, 2025, 36(10): 2359-2368.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.10.025
| 步骤 | 温度 | 持续时间 | 循环数 |
|---|---|---|---|
| 预变性 | 95 ℃ | 2 min | 1 |
| 变性 | 95 ℃ | 15 s | 30 |
| 退火 | 55 ℃ | 30 s | 30 |
| 延伸 | 72 ℃ | 30 s | 30 |
Tab.1 Procedure of cyclic amplification reaction
| 步骤 | 温度 | 持续时间 | 循环数 |
|---|---|---|---|
| 预变性 | 95 ℃ | 2 min | 1 |
| 变性 | 95 ℃ | 15 s | 30 |
| 退火 | 55 ℃ | 30 s | 30 |
| 延伸 | 72 ℃ | 30 s | 30 |
| 两相液体 | 物质 | 密度/ (kg·m-3) | 黏度/(mPa | 界面张力/(mN·m-1) |
|---|---|---|---|---|
| 分散相 | PBS缓冲液 | 1260 | 1.005 | 15.21 |
| 连续相 | 矿物油 | 935 | 10 |
Tab.2 Liquid composition and physical property parameters of dispersed phase and continuous phase
| 两相液体 | 物质 | 密度/ (kg·m-3) | 黏度/(mPa | 界面张力/(mN·m-1) |
|---|---|---|---|---|
| 分散相 | PBS缓冲液 | 1260 | 1.005 | 15.21 |
| 连续相 | 矿物油 | 935 | 10 |
| 组分 | 体积 |
|---|---|
| Genomic DNA | 10 µL |
| Primer F | 10 µL |
| Primer R | 10 µL |
| 2× Universal SYBR qPCR Mix | 250 µL |
| 去离子水 | 220 µL |
Tab.3 Biological reagents used in the experiment
| 组分 | 体积 |
|---|---|
| Genomic DNA | 10 µL |
| Primer F | 10 µL |
| Primer R | 10 µL |
| 2× Universal SYBR qPCR Mix | 250 µL |
| 去离子水 | 220 µL |
| 来源 | CV值 | 年份 |
|---|---|---|
| 文献[ | 12.44% | 2024 |
| 文献[ | 9.68% | 2023 |
| 文献[ | 7.78%~10.52% | 2016 |
Tab.4 Comparison of diameter CV values in recent dPCR studies.
| 来源 | CV值 | 年份 |
|---|---|---|
| 文献[ | 12.44% | 2024 |
| 文献[ | 9.68% | 2023 |
| 文献[ | 7.78%~10.52% | 2016 |
| [1] | KUANG J, YAN X, GENDERS A J, et al. An Overview of Technical Considerations When Using Quantitative Real-time PCR Analysis of Gene Expression in Human Exercise Research[J]. PLoS One, 2018, 13(5):e0196438. |
| [2] | IP B B K, WONG A T C, LAW J H Y, et al. Application of Droplet Digital PCR in Minimal Residual Disease Monitoring of Rare Fusion Transcripts and Mutations in Haematological Malignancies[J]. Scientific Reports, 2024, 14(1):6400. |
| [3] | LEI S, CHEN S, ZHONG Q. Digital PCR for Accurate Quantification of Pathogens:Principles, Applications, Challenges and Future Prospects[J]. International Journal of Biological Macromolecules, 2021, 184:750-759. |
| [4] | HO D, QUAKE S R, MCCABE E R B, et al. Enabling Technologies for Personalized and Precision Medicine[J]. Trends Biotechnol, 2020, 38(5):497-518. |
| [5] | MEHTA N. RT-QPCR Made Simple:a Comprehensive Guide on the Methods, Advantages, Disadvantages, and Everything in Between[J]. Undergraduate Research in Natural and Clinical Science and Technology (URNCST) Journal, 2022, 6(10):163-169. |
| [6] | 黄琴, 黄乐阳, 靳翔宇, 等. 注射式微流控芯片全集成核酸分析系统与精准医疗应用[J]. 中国激光, 2024, 51(9):198-207. |
| HUANG Qing, HUANG Leyang, JIN Xiangyu, et al. Fully Integrated Nucleic Acid Analysis System Based on Syringe Microfluidic Chip and Application of Precision Medicine [J]. Chinese Journal of Lasers, 2024, 51(9):198-207. | |
| [7] | LI S, MA Z, CAO Z, et al. Advanced Wearable Microfluidic Sensors for Healthcare Monitoring[J]. Small, 2020, 16(9):1903822. |
| [8] | 祁恒, 王贤松, 陈涛, 等. PMMA基连续流式PCR微流控芯片的CO2激光直写加工与应用[J]. 中国激光, 2009, 36(5):1239-1245. |
| QI Heng, WANG Xiansong, CHEN Tao, et al. Fabrication and Application of PMMA Continuous-flow PCR Microfluidic Chip with CO2 Laser Direct-writing Ablation Micromachining Technique[J]. Chinese Journal of Lasers, 2009, 36(5):1239-1245. | |
| [9] | WANG P, JING F, LI G, et al. Absolute Quantification of Lung Cancer Related Microrna by Droplet Digital PCR[J]. Biosensors and Bioelectronics, 2015, 74:836-842. |
| [10] | PINHEIRO L B, COLEMAN V A, HINDSON C M, et al. Evaluation of a Droplet Digital Polymerase Chain Reaction Format for DNA Copy Number Quantification[J]. Analytical Chemistry, 2012, 84(2):1003-1011. |
| [11] | 刘聪, 蒋克明, 周武平, 等. 基于液滴微流控技术的集成式数字PCR芯片[J]. 新技术新工艺, 2019(5):1-6. |
| LIU Cong, JIANG Keming, ZHOU Wuping, et al. Integrated Digital Polymerase Chain Reaction Chip Based on Droplet Microfluidic Technology[J]. New Technology & New Process, 2019(5):1-6. | |
| [12] | QUAN P L, SAUZADE M, BROUZES E. DPCR:a Technology Review[J]. Sensors (Basel), 2018, 18(4) :1271. |
| [13] | LEI S, CHEN S, ZHONG Q. Digital PCR for Accurate Quantification of Pathogens:Principles, Applications, Challenges and Future Prospects[J]. International Journal of Biological Macromolecules, 2021, 184:750-759. |
| [14] | CUI X, WU L, WU Y, et al. Fast and Robust Sample Self-digitization for Digital PCR[J]. Analytica Chimica Acta, 2020, 1107:127-134. |
| [15] | SCHAERLI Y, WOOTTON R C, ROBINSON T, et al. Continuous-flow Polymerase Chain Reaction of Single-copy DNA in Microfluidic Microdroplets[J]. Analytical Chemistry, 2009, 81(1):302-306. |
| [16] | ZHAN M, CHINGOZHA L, LU H. Enabling Systems Biology Approaches through Microfabricated Systems[J]. Analytical Chemistry, 2013, 85(19):8882-8894. |
| [17] | PAN Y, MA T, MENG Q, et al. Droplet Digital PCR Enabled by Microfluidic Impact Printing for Absolute Gene Quantification[J]. Talanta, 2020, 211:120680. |
| [18] | 李埰明. 基于数字PCR的核酸检测定量参考品制备与应用[D].北京:中国科学院大学, 2021. |
| LI Caiming. Preparation and Application of Quantitative Reference Materials for Nucleic Acid Detection Based on Digital PCR[D]. Beijing:University of Chinese Academy of Sciences, 2021. | |
| [19] | VIVEKANANTHAN V, VIGNESH R, VASANTHASEELAN S, et al. Concrete Bridge Crack Detection by Image Processing Technique by Using the Improved Otsu Method[J]. Materials Today:Proceedings, 2023, 74:1002-1007. |
| [20] | ZHANG C, XING D, LI Y. Micropumps, Microvalves, and Micromixers within PCR Microfluidic Chips:Advances and Trends[J]. Biotechnology Advances, 2007, 25(5):483-514. |
| [21] | TIAN Q, SONG Q, XU Y, et al. A Localized Temporary Negative Pressure Assisted Microfluidic Device for Detecting Keratin 19 in A549 Lung Carcinoma Cells with Digital PCR[J]. Analytical methods, 2015, 7(5):2006-2011. |
| [22] | DHAL K G, DAS A, RAY S, et al. Histogram Equalization Variants as Optimization Problems:a Review[J]. Archives of Computational Methods in Engineering, 2021, 28:1471-1496. |
| [23] | GANGULY R, LEE C S. A Poisson-independent Approach to Precision Nucleic Acid Quantification in Microdroplets[J]. ACS Applied Bio Materials, 2024, 7(5):3441-3451. |
| [24] | TANG Z, LV F, REYNOLDS D E, et al. Highly Parallel, Wash-free, and Ultrasensitive Centrifugal Droplet Digital Protein Detection in Sub-microliter Blood[J]. Lab on a Chip, 2023, 23(12):2758-2765. |
| [25] | BSOUL A, PAN S, CRETU E, et al. Design, Microfabrication, and Characterization of a Moulded PDMS/SU-8 Inkjet Dispenser for a Lab-on-a-printer Platform Technology with Disposable Microfluidic Chip[J]. Lab on a Chip, 2016, 16(17):3351-3361. |
| [1] | SHI Peicheng1, SHAN Zixian1, ZHU Hailong1, HAI Bin2, WANG Lei2, LU Fayan2. Integrated Design Technology for New Energy Vehicle Power Battery Systems [J]. China Mechanical Engineering, 2025, 36(07): 1611-1623. |
| [2] | FU Zhenfeng, WANG Zhenzhong, WANG Biao. Research on Microfluidic Chip Fluid Dynamic Pressure Polishing Process [J]. China Mechanical Engineering, 2024, 35(03): 534-540. |
| [3] | ZHU Jiangfeng, CAO Yuguang, ZHAO Qiankun, LI Lei. Study on Hydrodynamic Stability of a Dot Matrix Offshore Wind Turbine Foundation Structure [J]. China Mechanical Engineering, 2023, 34(20): 2428-2433,2474. |
| [4] | XU Ganjun, DAI Ning. Functional Lattice Structures Design Method Based on Strengthening Nodes [J]. China Mechanical Engineering, 2022, 33(13): 1537-1544. |
| [5] | WANG Qiancheng, SU Chun, WEN Zejun. Multi-condition Monitoring and Fault Diagnosis of Wind Turbines Based on Cointegration Analysis [J]. China Mechanical Engineering, 2022, 33(13): 1596-1603. |
| [6] | SUN Yun, JIANG Haifan, DING Guofu. Data Modeling,Integration and Storage Technology for Production Process Management and Control [J]. China Mechanical Engineering, 2022, 33(03): 356-365. |
| [7] | LIU Xiaofeng, TAN Qi, YE Rongting. Ensemble Variable Predictive Model Based on Optimal Features and Its Applications [J]. China Mechanical Engineering, 2021, 32(18): 2153-2158,2164. |
| [8] | HU Lai, ZHA Jun, ZHU Yongsheng, WEI Wenming, LI Dongya, LUO Ming, NIU Wentie, CHEN Yaolong. Research Progresses of Basic Equipment Manufacturing and High-grade Integrated CNC Machine Tools [J]. China Mechanical Engineering, 2021, 32(16): 1891-1903. |
| [9] | ZHUANG Yuan1;KONG Ning2;REN Jie2;LIU Yuqiang1;WANG Yaobing1;ZHANG Jie2;WANG Wenlong1;MA Shuai2. Review of Docking Interface Technology for Orbital Replacement Units [J]. China Mechanical Engineering, 2020, 31(16): 1917-1930. |
| [10] | GAO Fudong;WANG Dexin;WANG Haidong;CAO Jianping. Numerical Analysis and Optimization of Carrier/Air Vehicle Integrations Based on Jet Impingements [J]. China Mechanical Engineering, 2020, 31(12): 1425-1436. |
| [11] | LEI Pengfu;DAI Ning;WANG Zhipeng;CHEN Wei;HUANG Renkai. Research on Controllable Parameter Modeling Technology of Functional Microstructures [J]. China Mechanical Engineering, 2020, 31(05): 553-560. |
| [12] | GUO Dongming. High-performance Precision Manufacturing [J]. China Mechanical Engineering, 2018, 29(07): 757-765. |
| [13] | WANG Shenghuai1, 2;XU Fenghua1;CHEN Yurong1;XIE Tiebang2. A Kind of Multi-scale Integration Measurement System for Surface Textures [J]. China Mechanical Engineering, 2018, 29(06): 705-711,719. |
| [14] | LIU Dawei1,2;LUO Linming2;WANG Guohui2;JIN Xin2. Integrated Design of Non-sinusoidal Generator of Continuous Casting Mold [J]. China Mechanical Engineering, 2017, 28(21): 2608-2613. |
| [15] | YI Guofeng1;LI Qiaomin2;ZHONG Wen2;LIU Yuqi2. A Hexahedral Element Applied to Coining Simulations [J]. China Mechanical Engineering, 2017, 28(15): 1879-1883,1889. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||