[1]黄南天, 杨学航, 蔡国伟, 等. 采用非平衡小样本数据的风机主轴承故障深度对抗诊断[J]. 中国电机工程学报, 2020, 40(2):563-574.
HUANG Nantian, YANG Xuehang, CAI Guowei, et al. A Deep Adversarial Diagnosis Method for Wind Turbine Main Bearing Fault with Imbalanced Small Sample Scenarios[J]. Proceedings of the CSEE, 2020, 40(2):563-574.
[2]XIAO Ni, ZHANG Lei. Dynamic Weighted Learning for Unsupervised Domain Adaptation[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2021:15237-15246.
[3]温江涛, 张鹏程, 孙洁娣, 等. 残差卷积自编码网络无监督迁移轴承故障诊断[J]. 中国机械工程, 2022, 33(14):1707-1716.
WEN Jiangtao, ZHANG Pengcheng, SUN Jiedi,et al. Unsupervised Transfer Learning with Residual Convolutional Autoencoder Networks for Bearing Fault Diagnosis[J]. China Mechanical Engineering, 2022, 33(14):1707-1716.
[4]LI Yuanyuan, SHENG Hanmin, CHENG Yuhua, et al. State-of-health Estimation of Lithium-ion Batteries Based on Semi-supervised Transfer Component Analysis[J]. Applied Energy, 2020, 277:115504.
[5]HAN Te, LIU Chao, YANG Wenguang, et al. Deep Transfer Network with Joint Distribution Adaptation:a New Intelligent Fault Diagnosis Framework for Industry Application[J]. ISA Transactions, 2020, 97:269-281.
[6]DANG Wei, XIANG Longhai, LIU Shan, et al. A Feature Matching Method Based on the Convolutional Neural Network[J]. Journal of Imaging Science and Technology, 2023, 67(3):030402.
[7]MENG Yu, XUAN Jianping, XU Long, et al. Dynamic Reweighted Domain Adaption for Cross-domain Bearing Fault Diagnosis[J]. Machines, 2022, 10(4):245.
[8]吴磊, 王家序, 张新, 等. 基于最大重加权峭度盲解卷积的风电故障诊断[J]. 中国机械工程, 2022, 33(19):2356-2363.
WU Lei, WANG Jiaxu, ZHANG Xin, et al.Blind Deconvolution Based on Reweighted-kurtosis Maximization for Wind Turbine Fault Diagnosis[J]. China Mechanical Engineering, 2022, 33(19):2356-2363.
[9]BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis of Representations for Domain Adaptation[M]∥SCHLKOPF B, PLATT J, HOFMANN T. Advances in Neural Information Processing Systems 19.Cambridge:MIT Press, 2007:137-144.
[10]HU Qin, SI Xiaosheng, QIN Aisong, et al. Balanced Adaptation Regularization Based Transfer Learning for Unsupervised Cross-domain Fault Diagnosis[J]. IEEE Sensors Journal, 2022, 22(12):12139-12151.
[11]WANG Tianchi, YU Lu, WANG Wenyu, et al. Specific Emitter Identification Based on the Multi-discrepancy Deep Adaptation Network[J]. IET Radar, Sonar & Navigation, 2022, 16(12):2079-2088.
[12]SHEN Jian, QU Yanru, ZHANG Weinan, et al. Wasserstein Distance Guided Representation Learning for Domain Adaptation[C]∥Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, 2018:10.1609/aaai.v32i1.11784.
[13]董绍江, 朱朋, 朱孙科, 等. 基于仿真数据驱动和领域自适应的滚动轴承故障诊断方法[J]. 中国机械工程, 2023, 34(6):694-702.
DONG Shaojiang, ZHU Peng, ZHU Sunke, et al. Fault Diagnosis Method of Rolling Bearings Based on Simulation Data Drive and Domain Adaptation[J]. China Mechanical Engineering, 2023, 34(6):694-702.
[14]BUSTO P P, GALL J. Open Set Domain Adaptation[C]∥2017 IEEE International Conference on Computer Vision(ICCV).Venice, 2017:754-763.
[15]SAITO K, YAMAMOTO S, USHIKU Y, et al. Open Set Domain Adaptation by Backpropagation[C]∥European Conference on Computer Vision—ECCV 2018. Cham:Springer International Publishing, 2018:156-171.
[16]ZHONG Li, FANG Zhen, LIU Feng, et al. Bridging the Theoretical Bound and Deep Algorithms for Open Set Domain Adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8):3859-3873.
[17]LUO Yadan, WANG Zijian, CHEN Zhuoxiao, et al. Source-free Progressive Graph Learning for Open-set Domain Adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9):11240-11255.
[18]WU Jun, HE Jingrui. Domain Adaptation with Dynamic Open-set Targets[C]∥Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.Washington DC, 2022:2039-2049.
[19]FANG Zhen, LU Jie, LIU Feng, et al. Open Set Domain Adaptation:Theoretical Bound and Algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10):4309-4322.
[20]ZHAO Shubiao, WANG Guangbin, LI Xuejun, et al. Fault Diagnosis of Rolling Bearing Based on Cross-domain Divergence Alignment and Intra-domain Distribution Alienation[J]. Journal of Vibroengineering, 2023, 25(6):1124-1140.
[21]秦玉峰, 史贤俊. 基于MMD的故障可诊断性定量评价方法[J]. 控制与决策, 2023, 38(10):2925-2933.
QIN Yufeng, SHI Xianjun. Quantitative Evaluation Approach of Fault Diagnosability Based on Maximum Mean Discrepancy[J]. Control and Decision, 2023, 38(10):2925-2933.
[22]CHEN Renxiang, ZHU Jukun, HU Xiaolin, et al. Fault Diagnosis Method of Rolling Bearing Based on Multiple Classifier Ensemble of the Weighted and Balanced Distribution Adaptation under Limited Sample Imbalance[J]. ISA Transactions, 2021, 114:434-443.
[23]MENDES JNIOR P R, de SOUZA R M, de O WERNECK R, et al. Nearest Neighbors Distance Ratio Open-set Classifier[J]. Machine Learning, 2017, 106(3):359-386.
[24]WANG Guangbin, ZHAO Shubiao, ZHONG Zhixian, et al. Research on Shaft Current Damage Identification of Variable Condition Motor Bearings Based on Multiscale Feature Label Propagation and Manifold Metric Transfer[J]. Lubricants, 2023, 11(2):69.
[25]WANG Jindong, FENG Wenjie, CHEN Yiqiang, et al. Visual Domain Adaptation with Manifold Embedded Distribution Alignment[C]∥Proceedings of the 26th ACM International Conference on Multimedia.Seoul, 2018:402-410.
[26]ZHAO Huimin, ZHENG Jianjie, DENG Wu, et al.Semi-supervised Broad Learning System Based on Manifold Regularization and Broad Network[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(3):983-994.
[27]王军辉, 雷文平, 刘华杰, 等. 基于深度动态域适应的轴承故障诊断研究[J]. 振动与冲击, 2023, 42(14):245-250.
WANG Junhui, LEI Wenping, LIU Huajie, et al. Bearing Fault Diagnosis Based on Deep Dynamic Domain Adaptation[J]. Journal of Vibration and Shock, 2023, 42(14):245-250.
|