[1]DONG Shaojiang, XIAO Jiafeng, HU Xiaolin, et al. Deep Transfer Learning Based on Bi-LSTM and Attention for Remaining Useful Life Prediction of Rolling Bearing[J]. Reliability Engineering & System Safety, 2023, 230:108914.
[2]QIN Yi, YANG Jiahong, ZHOU Jianghong, et al. A New Supervised Multi-head Self-attention Autoencoder for Health Indicator Construction and Similarity-based Machinery RUL Prediction[J]. Advanced Engineering Informatics, 2023, 56:101973.
[3]HEMMER M, KLAUSEN A, Van KHANG H, et al. Health Indicator for Low-speed Axial Bearings Using Variational Autoencoders[J]. IEEE Access, 1012, 8:35842-35852.
[4]曾大懿, 杨基宏, 邹益胜, 等. 基于并行多通道卷积长短时记忆网络的轴承寿命预测方法[J]. 中国机械工程, 2020, 31(20):2454-2462.
ZENG Dayi, YANG Jihong, ZOU Yisheng, et al. Bearing Life Prediction Method Based on PMCCNN-LSTM[J]. China Mechanical Engineering, 2020, 31(20):2454-2462.
[5]姜万录, 雷亚飞, 韩可, 等. 基于VMD和SVDD结合的滚动轴承性能退化程度定量评估[J]. 振动与冲击, 2018, 37(22):43-50.
JIANG Wanlu, LEI Yafei, HAN Ke, et al. Performance Degradation Quantitative Assessment Method for Rolling Bearings Based on VMD and SVDD[J]. Journal of Vibration and Shock, 2018, 37(22):43-50.
[6]柏林, 闫康, 刘小峰. 基于状态追踪特征相空间重构的轴承寿命预测方法[J]. 振动与冲击, 2019, 38(23):119-125.
BO Lin, YAN Kang, LIU Xiaofeng. Bearing Life Prediction Method Based on Phase Space Reconstruction of State Tracking Features[J]. Journal of Vibration and Shock, 2019, 38(23):119-125.
[7]ZHU Jun, CHEN Nan, SHEN Changqing. A New Data-driven Transferable Remaining Useful Life Prediction Approach for Bearing under Different Working Conditions[J]. Mechanical Systems and Signal Processing, 2020,139:106602.
[8]董绍江, 裴雪武, 汤宝平, 等. 基于FNER性能退化指标及IDRSN的滚动轴承寿命状态识别方法[J]. 机械工程学报, 2021, 57(15):105-115.
DONG Shaojiang, PEI Xuewu, TANG Baoping, et al. Recognition of Rolling Bearing Life Status Based on FNER Performance Degradation Indicator and IDRSN[J]. Journal of Mechanical Engineering, 2021, 57(15):105-115.
[9]MAO Wentao, HE Jianliang, ZUO M J. Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Transfer Learning[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4):1594-1608.
[10]LEI Yaguo, LI Naipeng, GONTARZ S, et al. A Model-based Method for Remaining Useful Life Prediction of Machinery[J]. IEEE Transactions on Reliability, 2016, 65(3):1314-1326.
[11]曾庆凯, 文振华, 赵小飞, 等. 基于统计特征的滚动轴承性能退化分析研究[J]. 矿山机械, 2021, 49(2):44-48.
ZENG Qingkai, WEN Zhenhua, ZHAO Xiaofei, et al. Analysis on Performance Degradation of Rolling Bearing Based on Statistical Features[J]. Mining & Processing Equipment, 2021, 49(2):44-48.
[12]WU S J, GEBRAEEL N, LAWLEY M A, et al. A Neural Network Integrated Decision Support System for Condition-based Optimal Predictive Maintenance Policy[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A:Systems and Humans, 2007, 37(2):226-236.
[13]HEIMES F O. Recurrent Neural Networks for Remaining Useful Life Estimation[C]∥2008 International Conference on Prognostics and Health Management. Denver, 2008:1-6.
[14]朱朔, 白瑞林, 刘秦川. 基于果蝇优化算法-小波支持向量数据描述的滚动轴承性能退化评估[J]. 中国机械工程, 2018, 29(5):602-608.
ZHU Shuo, BAI Ruilin, LIU Qinchuan. Rolling Bearing Performance Degradation Assessment Based on FOA-WSVDD[J]. China Mechanical Engineering, 2018, 29(5):602-608.
[15]SIFFER A, FOUQUE P A, TERMIER A, et al. Anomaly Detection in Streams with Extreme Value Theory[C]∥Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, 2017:1067-1075.
[16]GAI Rongli, ZHANG Hao. Prediction Model of Agricultural Water Quality Based on Optimized Logistic Regression Algorithm[J]. EURASIP Journal on Advances in Signal Processing, 2023, 2023(1):21.
[17]CHEN D L, QIN Y, WANG Y, et al. Health Indicator Construction by Quadratic Function-based Deep Convolutional Auto-encoder and Its Application into Bearing RUL Prediction[J]. ISA Transactions, 2021, 114:44-56.
[18]GUO Liang, LI Naipeng, JIA Feng, et al. A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings[J]. Neurocomputing, 2017, 240(C):98-109.
[19]SUTRISNO E, OH H, VASAN A S S, et al. Estimation of Remaining Useful Life of Ball Bearings Using Data Driven Methodologies[C]∥2012 IEEE Conference on Prognostics and Health Management. Denver, 2012:1-7.
[20]康守强, 周月, 王玉静, 等. 基于改进SAE和双向LSTM的滚动轴承RUL预测方法[J]. 自动化学报, 2022, 48(9):2327-2336.
KANG Shouqiang, ZHOU Yue, WANG Yujing, et al. RUL Prediction Method of a Rolling Bearing Based on Improved SAE and Bi-LSTM[J]. Acta Automatica Sinica, 2022, 48(9):2327-2336.
|