|
Study and Application of Roller Replacement Robots with Non-stopping for Belt Conveyors
TIAN Liyong1, TANG Rui1, YU Ning1, YANG Xiuyu1, 2, QIN Wenguang3
China Mechanical Engineering
2024, 35 (05):
938-949.
DOI: 10.3969/j.issn.1004-132X.2024.05.019
In view of the problems of frequent replacement of belt conveyor rollers, heavy manual replacement tools, high labor intensity and low shutdown replacement efficiency, taking the belt conveyor in the main adit of Wangjialing Coal Mine as the research object, the roller replacement robots with non-stopping were studied according to roadway parameters and roller replacement processes, and the overall research plan of the robots was formulated. Based on the functional analysis method and the theory of roller replacement with non-stopping, the 3D solid model of the robots was established by using SolidWorks software, and the parameters of the walking mechanism, attitude adjustment platform, telescopic support platform and disassembling manipulator were optimized. The finite element analysis of the support platforms and belt lifting mechanisms was carried out by ANSYS Workbench software. The telescopic support platform adopted a sliding rail structure, and the stresses of the sliding rail under the cantilever and lifting rated load are as 15.647 MPa and 66.395 MPa respectively. The maximum deformation and displacement occur under the rated load. The displacement is as 1.0742 mm. Belt lifting mechanism adopted shear fork structure, the rated lifting maximum stress is as 152.82 MPa, the maximum displacement is as 0.7331 mm. According to the design parameters, the robot prototype was processed with the power of 64 kW diesel engine as the power, and the crawler was driven by the hydraulic motor. The speed range is as 3~8 km/h. The attitude adjustment platform may realize the lifting height 0~357 mm, the pitch angle ±15°, the roll angle -4°~7°, the rotation angle -10°~20°, the transverse movement range 0~400 mm, the longitudinal movement range 0~ 350 mm, the multi-stage telescopic mechanism adopted the combined slide to achieve the platform 0~2.1 m telescopic. Using a five-degree-of-freedom manipulator may disassemble and assemble rollers in different positions. Through the ground and underground tests, the robot prototype walking, attitude adjustment, lifting belt, disassemble roller functions were verified experimentally. The results show that the robots may pass well in the narrow tunnel of the main tunnel, and the maximum height of the lifting belt of the telescopic support platform is as 241 mm when the conveyor is not stopped, which provides enough operating space for the robots to disassemble and assemble the rollers under different positions to meet the design performance requirements. The study of roller replacement robots with non-stopping for belt conveyor provides a new way for the maintenance of coal mine belt conveyor.
Reference |
Related Articles |
Metrics |
Comments(0)
|
|