Previous Articles Next Articles
CHANG Keke;WANG Liping;XUE Qunji
Online:
2020-01-25
Published:
2020-04-11
常可可;王立平;薛群基
基金资助:
CLC Number:
CHANG Keke, WANG Liping, XUE Qunji. Progresses of Damage and Protection for Surfaces and Interfaces in Machinery under Extreme Operating Conditions[J]. China Mechanical Engineering.
常可可, 王立平, 薛群基. [学科发展]极端工况下机械表面界面损伤与防护研究进展[J]. 中国机械工程.
[1]刘维民, 薛群基. 摩擦学研究及发展趋势[J]. 中国机械工程, 2000,11(1/2):76-80.
LIU Weimin, XUE Qunji. Research and Development of Tribology [J]. China Mechanical Engineering, 2000,11(1/2):76-80. [2]雒建斌, 李津津. 摩擦学的进展和未来[J]. 润滑与密封, 2010,35(12):1-12. LUO Jianbin, LI Jinjin.Advancements and Future of Tribology[J]. Lubrication Engineering, 2010,35(12):1-12.
[3]温诗铸. 材料磨损研究的进展与思考[J]. 摩擦学学报, 2008,28(1):3-7.
WEN Shizhu. Research Progress on Wear of Materials[J]. Tribology,2008,28(1):3-7.
[4]吴进怡, 肖伟龙, 杨雨辉, 等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(5):359-363.
WU Jinyi, XIAO Weilong, YANG Yuhui, et al. Effect of Microbe on the Corrosion Behaviors and Mechanical Properties of 25 Carbon Steel in Tropical Seawater Condition[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(5):359-363.
[5]丁康康, 范林, 郭为民, 等. 典型金属材料深海腐蚀行为规律与研究热点探讨[J]. 装备环境工程, 2019, 16(1):117-123.
DING Kangkang, FAN Lin, GUO Weimin.Deep Sea Corrosion Behavior of Typical Metal Materials and Research Hotspot Discussion[J]. Equipment Environmental Engineering, 2019, 16(1):117-123.
[6]王勋龙, 于青, 刘二虎, 等. 极地条件下船舶装备与材料检测现状及发展趋势[J]. 中国计量, 2018, 273(8):81-82.
WANG Xunlong, YU Qing, LIU Erhu, et al. Status and Development Trend of Ship Equipment and Material Inspection under Polar Condition[J]. China Metrology, 2018, 273(8):81-82.
[7]韩恩厚, 王俭秋, 吴欣强, 等. 核电高温高压水中不锈钢和镍基合金的腐蚀机制[J]. 金属学报, 2010,46(11):105-116.
HAN Enhou, WANG Jianqiu, WU Xinqiang, et al. Corrosion Mechanisms of Stainless Steel and Nickel Base Alloys in High Temperature High Pressure Water[J]. Acta Metallurgica Sinica, 2010,46(11):105-116.
[8]高立本, 沈健. 高温气冷堆的发展与前景[J]. 中国核工业, 2016(10): 24-26.
GAO Liben, SHEN Jian.The Development and Perspective of HTGR[J]. China Nuclear Industry, 2016(10): 24-26.
[9]STACHOWIAK G W. How Tribology Has Been Helping Us to Advance and to Survive[J]. Friction, 2017,5(3):233-247.
[10]姚志雄, 黄立峰, 黄健. 影响空间液体润滑的环境因素[J]. 润滑与密封, 2005(3):159-161.
YAO Zhixiong, HUANG Lifeng, HUANG Jian. The Environmental Factors to Affect the Performance of Lubrication for Space Application[J]. Lubrication Engineering,2005(3):159-161.
[11]张玉花, 肖杰, 张晓伟, 等. 嫦娥三号巡视器移动设计与实现[J]. 中国科学:技术科学, 2014,44(5):55-63.
ZHANG Yuhua, XIAO Jie, ZHANG Xiaowei, et al.Design and Implementation of ChangE-3 Rover Location System[J]. Scientia Sinica(Technologica), 2014,44(5):55-63.
[12]赵德孜. 海洋环境下燃气轮机涡轮叶片的热腐蚀与防护[J]. 装备环境工程, 2011,8(5):106-109.
ZHAO Dezi.Hot Corrosion and Protection of Gas Turbine Blade in Marine Environment[J]. Equipment Environmental Engineering, 2011,8(5):106-109.
[13]陈力捷. 煤矿机械磨损失效分析和抗磨措施[J]. 煤炭技术, 2011(6):28-29.
CHEN Lijie.Failure Analysis of Abrasion of Coal Mine Machinery and Measures for Anti-abrasion[J]. Coal Technology, 2011(6):28-29.
[14]段艳军, 张颖. 复杂艰险山区高速铁路限制坡度的选择[J]. 山西建筑, 2019, 45(1):133-136.
DUAN Yanjun, ZHANG Ying.Selection of Restricted Slopes for High Speed Railways in Complex and Dangerous Mountainous Areas [J]. Shanxi Architecture, 2019, 45(1):133-136.
[15]SPALVINS T. A Review of Recent Advances in Solid Film Lubrication[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1987, 5(2):212.
[16]ROBERTS E W. Thin Solid Lubricant Films in Space[J]. Tribology International, 1990, 23(2):95-104.
[17]WANG Yanjun, LIU Zuomin. Tribological Properties of High Temperature Self-lubrication Metal Ceramics with an Interpenetrating Network[J]. Wear, 2008,265(11/12):1720-1726.
[18]LUO J K, FLEWITT A J, SPEARING S M, et al. Youngs Modulus of Electroplated Ni Thin Film for MEMS Applications[J]. Materials Letters, 2004,58(17/18): 2306-2309.
[19]ZALAR A , HOFMANN S. Depth Resolution of Multilayer Cr/Ni Thin Film Structures Deposited on Substrates with Different Roughness[J]. Vacuum, 1987, 37(1/2):169-173.
[20]THOMAS S, AL-HARTHI S H, SAKTHIKUMAR D, et al. Microstructure and Random Magnetic Anisotropy in Fe-Ni Based Nanocrystalline Thin Films[J]. Journal of Physics D: Applied Physics, 2008, 41(15):155009.
[21]GONG Fubao, SHEN Jun, GAO Runhua, et al. Influence of Heat Treatment on Microstructure and Mechanical Properties of FeCrNi Coating Produced by Laser Cladding[J]. Transactions of Nonferrous Metals Society of China, 2016,26:2117-2125.
[22]VAZ F, FERREIRA J, RIBEIRO E, et al. Influence of Nitrogen Content on the Structural, Mechanical and Electrical Properties of TiN Thin Films[J]. Surface & Coatings Technology, 2005, 191(2/3):317-323.
[23]BULL S J, BHAT D G, STAIA M H. Properties and Performance of Commercial TiCN Coatings. Part 2: Tribological Performance[J]. Surface & Coatings Technology, 2003, 163/164:507-514.
[24]IMANISHI N, KANAMURA K, TAKEHARA Z I. Synthesis of MoS2 Thin Film by Chemical Vapor Deposition Method and Discharge Characteristics as a Cathode of the Lithium Secondary Battery[J]. Journal of the Electrochemical Society, 1992,139(8):2082-2087.
[25]DING Qi, WANG Liping, WANG Yongxin, et al. Improved Tribological Behavior of DLC Films under Water Lubrication by Surface Texturing[J]. Tribology Letters, 2010,41(2):439-449.
[26]PIERLOT C, PAWLOWSKI L, BIGAN M, et al. Design of Experiments in Thermal Spraying: a Review[J]. Surface and Coatings Technology, 2008, 202(18): 4483-4490.
[27]ONICIU L M L, MURESAN L. Some Fundamental Aspects of Levelling and Brightening in Metal Electrodeposition[J]. Journal of Applied Electrochemistry, 1991, 21(7):565-574.
[28]CONRAD J R. Plasma Source Ion-implantation Technique for Surface Modification of Materials[J]. Journal of Applied Physics 1987, 62(11):4591-4596.
[29]PEI Y T, HOSSON J T M D. Functionally Graded Materials Produced by Laser Cladding[J]. Acta Materialia, 2000, 48(10):2617-2624.
[30]KIM M S, RYU J J, SUNG Y M. One-step Approach for Nano-crystalline Hydroxyapatite Coating on Titanium via Micro-arc Oxidation[J]. Electrochemistry Communications, 2007, 9(8):1886-1891.
[31]MEYERSON B S. Low-temperature Silicon Epitaxy by Ultrahigh Vacuum/Chemical Vapor Deposition[J]. Applied Physics Letters, 1986, 48(12):797-799.
[32]MITSUO A, UCHIDA S, AIZAWA T. Effect of Pulse Bias Voltage and Nitrogen Pressure on Nitrogen Distribution in Steel Substrate by Plasma Immersion Ion Implantation of Nitrogen[J]. Surface & Coatings Technology, 2004, 186(1/2):196-199.
[33]DING Qingqing, ZHANG Yin, CHEN Xiao, et al. Tuning Element Distribution, Structure and Properties by Composition in High-entropy Alloys[J]. Nature, 2019,574:223-227.
[34]YOUSSEF K M, ZADDACH A J, NIU C, et al. A Novel Low-density, High-hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures[J]. Materials Research Letters, 2015, 3(2): 95-99.
[35]CHOU Y L, YEH J W, SHIH H C . The Effect of Molybdenum on the Corrosion Behaviour of the High-entropy Alloys Co1.5CrFeNi1.5Ti0.5Mox in Aqueous Environments[J]. Corrosion Science, 2010, 52(8):2571-2581.
[36]ZHANG Hui, PAN Ye, HE Yizhu. Synthesis and Characterization of FeCoNiCrCu High-entropy Alloy Coating by Laser Cladding[J]. Materials & Design, 2011,32(4):1910-1915.
[37]CAI Yangchuan, MANLADAN S M, LUO Zhen. Tribological Behaviour of the Double FeCoNiCrCux Middle-entropy Alloy Coatings[J]. Surface Engineering 2019,35(1):14-21.
[38]HSU C Y, SHEU T S, YEH J W, et al. Effect of Iron Content on Wear Behavior of AlCoCrFexMo0.5Ni High-entropy Alloys[J]. Wear, 2010,268(5/6):653-659.
[39]GOMEZESPARZA C D, RAMIREZVALDESPINO C A, ESTRADAGUEL I, et al. Microstructural Study and Antibacterial Response of an AlCoCrCuFeMoNi High-entropy Alloy[J]. Microscopy and Microanalysis, 25(S2), 2646-2647.
[40]ZHU Jinming, ZHU Jieli, LIANG Jianlie. Microstructure and Mechanical Properties of Multi-principal Component AlCoCrFeNiCux Alloy[J]. Rare Metals, 2016, 35(5):385-389.
[41]LAI C H, LIN S J, YEH J W, et al. Effect of Substrate Bias on the Structure and Properties of Multi-element(AlCrTaTiZr)N Coatings[J]. Journal of Physics D: Applied Physics, 2006,39(21):4628-4633.
[42]LAI C H, TSAI M H, LIN S J, et al. Influence of Substrate Temperature on Structure and Mechanical, Properties of Multi-element (AlCrTaTiZr)N Coatings[J]. Surface & Coatings Technology, 2007,201(16/17):6993-6998.
[43]LAI C H, LIN S J, YEH J W, et al. Preparation and Characterization of AlCrTaTiZr Multi-element Nitride Coatings[J]. Surface and Coatings Technology, 2006,201(6):3275-3280.
[44]中科院宁波材料所. 非晶碳基抗磨蚀防护涂层材料研究取得进展[J]. 表面工程与再制造, 2018(6):61-62.
Ningbo Institute of Materials Technology & Engineering, CAS. Research Progress on Graphite-like Carbon Based Anti-wear Protective Coating Materials [J]. Surface Engineering & Remanufacturing, 2008(6):61-62.
[45]ZHENG Shujing, CAI Zhaobing, PU Jibin, et al. A Feasible Method for the Fabrication of VAlTiCrSi Amorphous High Entropy Alloy Film with Outstanding Anti-corrosion Property[J]. Applied Surface Science, 2019,483:870-874.
[46]CHEN Shengyu, CAI Zhaobing, LU Zhaoxia , et al. Tribo-corrosion Behavior of VAlTiCrCu High-entropy Alloy Film[J]. Materials Characterization, 2019,157:109887.
[47]HSIEH M H, TSAI M H, SHEN W J, et al. Structure and Properties of Two Al-Cr-Nb-Si-Ti High-entropy Nitride Coatings[J]. Surface and Coatings Technology, 2013,221:118-123.
[48]JOHANSSON K, RIEKEHR L, FRITZE S, et al. Multicomponent Hf-Nb-Ti-V-Zr Nitride Coatings by Reactive Magnetron Sputter Deposition[J]. Surface and Coatings Technology, 2018,349:529-539.
[49]邹林华, 黄伯云, 黄启忠, 等. 国外C/C复合材料摩擦学的研究现状[J]. 摩擦学学报, 2001, 21(2):157-160.
ZOU Linhua, HUANG Boiyun, HUANG Qizhong, et al.Current State of Tribological Investigation on Carbon-Carbon Composites at Abroad[J]. Tribology, 2001, 21(2):157-160.
[50]黄伯云, 肖鹏, 陈康华. 复合材料研究新进展(下)[J]. 金属世界, 2007(2):46-48.
HUANG Boiyun, XIAO Peng, CHEN Kanghua. New Progress of Composite Materials Research(Ⅱ)[J]. Metal World, 2007(2):46-48.
[51]王璐, 胡树兵, 单炜涛, 等. 激光熔覆NiCrMn-WC复合涂层的组织与耐磨性[J]. 中国有色金属学报, 2014, 24(1):145-151.
WANG Lu, HU Shubing, SHAN Weitao, et al.Microstructure and Wear Resistance of Laser Cladding NiCrMn-WC Composite Coatings[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(1):145-151.
[52]张欣, 吴宜勇, 何世禹, 等. 抗原子氧有机/无机氧化硅复合涂层的研究[J]. 宇航材料工艺,2007(4):23-27.
ZHANG Xin, WU Yiyong, HE Shiyu, et al.Structure and Properties of Organic /Inorganic Hybrid Silica Coatings[J]. Aerospace Materials and Technology, 2007(4):23-27.
[53]朱子新, 徐滨士, 张伟, 等. 高速电弧喷涂Fe-Al/WC复合涂层的组织和性能[J]. 材料工程,2002(5):18-21.
ZHU Zixin, XU Binshi, ZHANG Wei, et al.Microstructure and Properties of Fe-Al/WC Coatings Prepared by High Velocity Arc Spraying[J]. Materials Engineering, 2002(5):18-21.
[54]MARTINS R C, MOURA PAULO S, SEABRA J O. MOS2/Ti Low-friction Coating for Gears[J]. Tribology International, 2006, 39(12):1686-1697.
[55]LI Hao, ZHANG Guangan, WANG Liping. The Role of Tribo-pairs in Modifying the Tribological Behavior of the MoS2/Ti Composite Coating[J]. Journal of Physics D: Applied Physics, 2016,49(9): 095501.
[56]ZHANG Jingwen, WANG Yongxin, ZHOU Shengguo, et al. Tailoring Self-lubricating, Wear-resistance, Anticorrosion and Antifouling Properties of Ti/(Cu, MoS2)-DLC Coating in Marine Environment by Controlling the Content of Cu Dopant[J]. Tribology International, 2020,143:106029.
[57]TORGERSON T B, HARRIS M D, ALIDOKHT S A, et al. Room and Elevated Temperature Sliding Wear Behavior of Cold Sprayed Ni-WC Composite Coatings[J]. Surface and Coatings Technology, 2018,350:136-145.
[58]吴萍, 姜恩永, 周昌炽, 等. 激光熔覆Ni/WC复合涂层的组织和性能[J]. 中国激光, 2003, 30(4):357-360.
WU Ping, JIANG Enyong, ZHOU Changchi, et al.Microstructure and Properties of Ni/WC Composite Coating Prepared by Laser Cladding [J]. Chinese Journal of Lasers, 2003, 30(4):357-360.
[59]HARSHA S, DWIVEDI D K, AGARWAL A. Performance of Flame Sprayed Ni-WC Coating under Abrasive Wear Conditions[J]. Journal of Materials Engineering & Performance, 17(1):104-110.
[60]LIU Chengbao, QIU Shihui, DU Peng, et al. Ionic Liquid-graphene Oxide Hybrid Nanomaterial: Synthesis and Anticorrosive Applications[J]. Nanoscale, 2018, 10, 8115-8124.
[61]LIU Chengbao, DU Peng, ZHAO Haichao, et al. Synthesis of L-histidine-attached Graphene Nanomaterials and Their Application for Steel Protection[J]. ACS Applied Nano Materials, 2018,1:1385-1395.
[62]LIU Chengbao, ZHAO Haichao, HOU Peimin, et al. Efficient Graphene/Cyclodextrin-based Nanocontainer: Synthesis and Host-guest Inclusion for Self-healing Anticorrosion Application[J]. ACS Applied Materials & Interfaces 2018,10:36229-36239.
[63]蒲吉斌, 王立平, 薛群基. 多尺度强韧化碳基润滑薄膜的研究进展[J]. 中国表面工程, 2014, 27(6):4-27.
PU Jibin, WANG Liping, XUE Qunji.Progress in Strengthening and Toughening Carbon-based Films[J]. China Surface Engineering, 2014, 27(6):4-27.
[64]王云锋, 王立平, 张广安, 等. 碳化钛掺杂含氢类金刚石薄膜的力学和机械性能研究[C]∥2009年全国青年摩擦学学术会议论文集.长沙,2009:507.
WANG Yunfeng, WANG Liping, ZHANG Guangan, et al.Mechanical Properties of Titanium Carbide Doped Diamond-like Carbon Films[C]∥Proceedings of 2009 National Youth Tribology Conference. Changsha, 2009:507.
[65]郑越青, 王立平, 陈金明, 等. 中频非平衡磁控溅射沉积Ti-DLC膜摩擦磨损性能研究[J]. 润滑与密封2009,34(11):42-45.
ZHENG Yueqing, WANG Liping, CHEN Jinming, et al. Tribological Properties of Ti-DLC Films Deposited by Mid-frequency Dual-magnetron Sputtering[J]. Lubrication Engineering, 2009,34(11):42-45.
[66]崔明君, 任思明, 王永刚, 等. 石墨烯基防腐涂层研究进展[J]. 表面技术, 2019,48(6):46-55.
CUI Mingjun, REN Siming, WANG Yonggang, et al. Research Progress of the Graphene Coatings for Corrosion Protection[J]. Surface Technology, 2019,48(6):46-55.
[67]赵晓宇, 张广安, 王立平, 等. MoS2/Pb-Ti多层薄膜的结构和摩擦学性能[J]. 表面技术, 2018,47(10):108-117.
ZHAO Xiaoyu, ZHANG Guangan, WANG Liping, et al.Structure and Tribological Properties of MoS2/Pb-Ti Multilayer Films[J]. Surface Technology, 2018,47(10):108-117.
[68]CHEN Li, DU Yong, XIONG Xiang, et al. Improved Properties of Ti-Al-N Coating by Multilayer Structure[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(6):681-685.
[69]XU Yuxiang, CHEN Li, PEI Fei, et al. Effect of the Modulation Ratio on the Interface Structure of TiAlN/TiN and TiAlN/ZrN Multilayers: First-principles and Experimental Investigations[J]. Acta Materialia, 2017, 130:281-288.
[70]杨雨辉, 肖伟龙, 柴柯, 等. 碳含量和浸泡时间对碳钢热带自然海水腐蚀产物中细菌组成的影响[J]. 中国腐蚀与防护学报, 2011, 31(4):294-298.
YANG Yuhui, XIAO Weilong, CHAI Ke, et al. Composition of Bacteria in Corrosion Product of Carbon Steel with Different Carbon Content Immersed in Seawater for Different time[J]. Journal of Chinese Society for Corrosion and Protection, 2011, 31(4):294-298.
[71]牛艳, 林振龙, 林国基,等. Q235钢在海洋铁细菌作用下的腐蚀行为研究[J]. 海洋环境科学, 2014(5):739-744.
NIU Yan, LIN Zhenlong, LIN Guoji, et al. Research on Corrosion Behavior of Q235 Steel in Marine Iron-oxidizing Bacteria[J]. Marine Environmental Science, 2014(5):739-744.
[72]常雪婷. 海洋微生物附着腐蚀铁铝金属间化合物的机制研究[D].济南:山东大学, 2007.
CHANG Xueting. Study on Mechanisms of Microbiological Influence Corrosion for the Fe-Al Intermetallic Compounds[J]. Jinan: Shangdong University, 2007.
[73]吴进怡, 肖伟龙, 柴柯, 等. 热带海洋环境下海水中微生物对45钢腐蚀行为的单因素影响[J]. 金属学报, 2010,46(1):120-124.
WU Jinyi, XIAO Weilong, CHAI Ke, et al.The Single Effect of Microbe on the Corrosion Behaviors of 45 Steel in Seawater of Tropical Ocean Environment[J]. Acta Metallurgica Sinica, 2010,46(1):120-124.
[74]刘登良. 自修复(Self-healing)涂层材料——由观念创新到材料和产品创新[J]. 中国涂料, 2007(7):12-13.
LIU Dengliang.Self-healing Coating Materials-from Innovation of Concepts to Innovation of Materials and Products[J]. China Coatings, 2007(7):12-13.
[75]王巍, 王鑫, 刘晓杰, 等. 海洋环境中自修复涂层研究进展[J]. 装备环境工程, 2018, 15(10):98-106.
WANG Wei, WANG Xin, LIU Xiaojie, et al.Research Progress of Self-healing Coatings in Marine Environment [J]. Equipment Environmental Engineering, 2018, 15(10):98-106.
[76]ZHU Yebiao, DONG Minpeng, ZHAO Xiaoran, et al. Self-healing of TiSiN/Ag Coatings Induced by Ag[J]. Journal of the American Ceramic Society, 2019,102(12):7521-7532.
[77]ZHU Yebiao, DONG Minpeng, CHANG Keke, et al. Prolonged Anti-bacterial Action by Sluggish Release of Ag from TiSiN/Ag Multilayer Coating[J]. Journal of Alloys and Compounds, 2019,783:164-172.
[78]ZHANG Haijing, REN Siming, PU Jibin, et al. Barrier Mechanism of Multilayers Graphene Coated Copper Against Atomic Oxygen Irradiation[J]. Applied Surface Science, 2018, 444: 28-35.
[79]REN Siming, SHANG Kedong, CUI Mingjun, et al. Structural Design of MoS2-based Coatings toward High Humidity and Wide Temperature[J]. Journal of Materials Science, 2019, 54: 11889-11902.
[80]REN Siming, CUI Mingjun, PU Jibin, et al. Multilayer Regulation of Atomic Boron Nitride Films to Improve Oxidation and Corrosion Resistance of Cu[J]. ACS Applied Materials & Interfaces, 2017, 9: 27152-27165.
[81]鲁晓刚, 王卓, CUI Y W, 等. 计算热力学、计算动力学与材料设计[J]. 科学通报, 2013,58(35): 3656-3664.
LU Xiaogang, WANG Zhuo, CUI Y W, et al. Computational Thermodynamics, Computational Kinetics and Materials Design[J]. Chinese Science Bulletin (Chinese Version), 2013,58(35): 3656-3664.
[82]刘梓葵. 关于材料基因组的基本观点及展望[J]. 科学通报, 2013,58(35): 3618-3622.
LIU Zikui. Perspective on Materials Genome[J]. Chinese Science Bulletin (Chinese Version), 2013,58(35): 3618-3622.
[83]赵继成. 材料基因组计划中的高通量实验方法[J]. 科学通报, 2013,58(35): 3647-3655.
ZHAO Jicheng. High-throughput Experimental Tools for the Materials Genome Initiative[J]. Chinese Science Bulletin (Chinese Version), 2013,58(35): 3647-3655.
[84]GREN J. 材料基因组与相图计算[J]. 科学通报, 2013,58(35): 3633-3637.
gren J. The Materials Genome and CALPHAD [J]. Chinese Science Bulletin(Chinese Version), 2013,58(35): 3633-3637.
[85]陈龙庆. 相场模拟与材料基因组计划[J]. 科学通报, 2013,58(35): 3638-3641.
CHEN Longqing. Phase-field Method and Materials Genome Initiative (MGI)[J]. Chinese Science Bulletin(Chinese Version), 2013,58(35): 3638-3641.
[86]LI Qiang, ZHENG Shaoxian, PU Jibin, et al. Thermodynamics and Kinetics of an Oxygen Adatom on Pristine and Functionalized Graphene: Insight Gained into Their Anticorrosion Properties[J]. Physical Chemistry Chemical Physics, 2019, 21: 12121-12129.
[87]LI Qiang, ZHENG Shaoxian, PU Jibin, et al. Revealing the Failure Mechanism and Designing Protection Approach for MoS2 in Humid Environment by First-principles Investigation[J]. Applied Surface Science,2019,487:1121-1130.
[88]SPENCER P, HOLLECK H. Application of a Thermochemical Data-bank System to the Calculation of Metastable Phase Formation during PVD of Carbide, Nitride and Boride Coatings[J]. High Temperature Science, 1990, 27: 295-309.
[89]CHEN Qing, SUNDMAN B. Thermodynamic Assessment of the Ti-Al-N System[J]. Journal of Phase Equilibria, 1998,19(2):146-160.
[90]MAYRHOFER P, MUSIC D, SCHNEIDER J, et al. Influence of the Al Distribution on the Structure, Elastic Properties, and Phase Stability of Supersaturated Ti1-xAlxN[J]. Journal of Applied Physics, 2006, 100: 1-5.
[91]HOLEC D, ROVERE F, MAYRHOFER P H, et al. Pressure-dependent Stability of Cubic and Wurtzite Phases within the TiN-AlN and CrN-AlN Systems[J]. Scripta Materialia, 2010, 62: 349-352.
[92]LIU S D, CHANG K K, MRAZ S, et al. Modeling of Metastable Phase Formation for Sputtered Ti1-xAlxN Thin Films[J]. Acta Materialia, 2019, 165: 615-625. |
[1] | YU Minfeng, PENG Xudong, MENG Xiangkai, LIANG Yangyang, . Research on Heat Transfer Enhancement Mechanism of Contact Mechanical Seals with Textured Circumference Surfaces#br# [J]. China Mechanical Engineering, 2023, 34(11): 1268-1279. |
[2] | PAN Ling, LIN Guobin, HAN Yuqing, YU Hui. Molecular Dynamics Simulation for Effect of Nanoparticle Additives on Boundary Lubrication [J]. China Mechanical Engineering, 2023, 34(10): 1140-1156. |
[3] | SHEN Mingxue, RONG Bin, LI Shengxin, ZHAO Huoping, JI Dehui, XIONG Guangyao. Effects of Wheel Tread Out-of-roundness on Wheel-rail Interface Adhesions and Wheel Surface Damages of High-speed Trains#br# [J]. China Mechanical Engineering, 2022, 33(22): 2664-2672,2683. |
[4] | FENG Shuo, CHEN Xudong, TANG Rui, WANG Liwen, ZHANG Fan, CAI Zhenbing. Fretting Wear Properties of Nuclear TP316H Steels under Different Medium Environments [J]. China Mechanical Engineering, 2022, 33(13): 1551-1559,1603. |
[5] | CHANG Keke, CHEN Leilei, ZHOU Ruonan, XIAO Xuelian, WANG Fangming, WANG Liping. Progresses of Surface Engineering in Extreme Environments and Its Common Scientific Problems [J]. China Mechanical Engineering, 2022, 33(12): 1388-1417. |
[6] | FAN Xin, REN Siming, WANG Haixin , PU Jibin. Environmental Adaptability and Tribological Properties of MoS2/WS2 Composite Films [J]. China Mechanical Engineering, 2022, 33(12): 1468-1476. |
[7] | LIN Yudong, GUO Zhiwei, YUAN Chengqing, . Effects of PTFE on Tribological Properties of Steel-backed UHMWPE Fiber Fabric Composites [J]. China Mechanical Engineering, 2022, 33(12): 1484-1492,1503. |
[8] | SHEN Mingxue, LI Shengxin, YU Meng, HUANGFU Lizhi, RONG Bin, XIONG Guangyao. Response Behavior of Wheel-rail Interface Adhesion and Damage after Wheels Encountering Warm and Humid Airflow during Trains through Tunnels in Frigid Regions [J]. China Mechanical Engineering, 2022, 33(12): 1504-1511. |
[9] | YU Guoda, LIU Huaiju, LU Zehua, WEI Peitang. Simulation and Experimental Study of Steady-state Temperature Field of Plastic Gears under Grease Lubrication Conditions#br# [J]. China Mechanical Engineering, 2022, 33(08): 890-898,907. |
[10] | MA Yi, CHEN Yutao, MENG Xiangkai, ZHAO Wenjing, PENG Xudong, . Transient Start-up Dynamics Model and Sealing Performance of Single Metal Seals in Cone Bits [J]. China Mechanical Engineering, 2022, 33(07): 777-785. |
[11] | XIANG Jingjing, DONG Conglin, BAI Xiuqin, TANG Min. Study on Tribological Characteristics of Rotary Vane Steering Gear Seals under Different Abrasive Particle Sizes [J]. China Mechanical Engineering, 2022, 33(04): 397-405. |
[12] | PAN Chengyi, TONG Yuanqi, CAO Guanqun, ZHAO Yanling. Research on Friction and Wear Characteristics and Simulation of Microstructures Surface Unfolding Wheels [J]. China Mechanical Engineering, 2021, 32(22): 2689-2696. |
[13] | LIN Qiyin, ZHANG Yuhan, HONG Jun, WANG Chen, ZHANG Ningjing, . Influences of Grain Sizes on Contact Mechanics Properties of Polycrystalline Coppers [J]. China Mechanical Engineering, 2021, 32(19): 2312-2320. |
[14] | GONG Ran, ZHANG Zhenyu, CHENG Zhigao, XU Yi, ZHANG He. Two-way Fluid-Solid Coupling Simulation and Experimental Research of Sealing Rings Based on MpCCI Method [J]. China Mechanical Engineering, 2021, 32(14): 1639-1646. |
[15] | PENG Xudong, HE Liangjie, JIANG Jinbo, MENG Xiangkai, HU Liguo, GUO Jungang. Study on Tribological Properties of Phenolic Resin Impregnated Graphite/SiC Ceramic Sealing Materials#br# [J]. China Mechanical Engineering, 2021, 32(11): 1283-1292. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||