[1]KARIS T E, MILLER J L, HUNZIKER H E, et al. Oxidation Chemistry of a Pentaerythritol Tetraester Oil[J]. Tribology Transactions, 1999, 42(3):431-442.
[2]ZSIDAI L, BAETS P D, SAMYN P, et al. The Tribological Behaviour of Engineering Plastics during Sliding Friction Investigated with Small-scale Specimens [J]. Wear, 2002, 253(5/6):673-688.
[3]WU N, ZONG Z M, Fei Y W, et al. Thermal Oxidation Stability of Poly-α-olefin Lubricating oil [J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12:813-817.
[4]MAKSIMKIN A V, DANILOV V D, SENATOV F S, et al. Wear Performance of Bulk Oriented Nano-composites UHMWPE/FMWCNT and Metal-Polymer Composite Sliding Bearings[J]. Wear, 2017, 167, 392-393.
[5]唐明惠,涂淑平,孙文哲.碳填料/聚四氟乙烯复合材料的研究进展[J].应用化工,2020,49(6):1511-1514.
TANG Minghui, TU Shuping, SUN Wenzhe. Research Progress of Carbon Filler/Polytetrafluo-roethylene Composites[J]. Applied Chemical Industry, 2020, 49(6):1511-1514.
[6]AVALLE M, ROMANELLO E.Tribological Characterization of Modified Polymeric Blends [J].Procedia Structural Integrity, 2018, 8:239-255.
[7]韩宝军,吴海银,丁成成,等.石墨相氮化碳增强聚酰亚胺摩擦磨损性能[J].高校化学工程学报, 2020, 34(3):802-809.
HAN Baojun, WU Haiyin, DING Chengcheng, et al. Friction and Wear Properties of Graphitic Carbon Nitride Reinforced Polyimide[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(3):802-809.
[8]吕生华,梁国正,何洋,等.超高相对分子质量聚乙烯纤维研究进展[J].化工新型材料, 2002(8):13-16.
LYU Shenghua, LIANG Guozheng, HE Yang, et al. The Research Progress of Ultra High Molecular Weight Polyethylene Fiber [J]. New Chemical Materials, 2002(8):13-16.
[9]赵刚,赵莉,谢雄军.超高分子量聚乙烯纤维的技术与市场发展[J].纤维复合材料,2011, 28(1):50-56.
ZHAO Gang, ZHAO Li, XIE Xiongjun. Ultra High Molecular Weight Polyethylene Fiber Material Technology and Market Development Prospect [J]. Fiber Composites, 2011, 28(1):50-56.
[10]王桦.超高分子量聚乙烯纤维[J].四川纺织科技,2001 (1):6-10.
WANG Hua. Brief Introduction on Ultra-high Molecular Weight Polyethylene Fiber [J]. Sichuan Textile Technology, 2001 (1):6-10.
[11]LI D, GUO Z. Robust Superhydrophobic and Self-Lubricating PTES-TiO2@UHMWPE Fabric and Its Tribological Properties [J]. RSC Advances, 2017, 7(15):9169-9175.
[12]金军,张慧萍,晏雄.超高分子量聚乙烯纤维的表面改性研究[J].产业用纺织品,2010, 233(2):37-40.
JIN Jun, ZHANG Huiping, YAN Xiong, Study on Surface-treatment of UHMWPE Fiber[J]. Technical Textiles, 2010, 233(2):37-40.
[13]张春燕,于俊荣,刘兆峰,等.超高相对分子质量聚乙烯纤维的表面黏结性能研究[J].东华大学学报(自然科学版),2006 (1):7-10.
ZHANG Chunyan, YU Junrong, LIU Zhaofeng, et al. Study on the Surface Adhesion of UHMWPE Fiber [J]. Journal of Donghua University(Natural Science Edition), 2006(1):7-10.
[14]贾彩霞,王乾,任荣,等.超高分子量聚乙烯(UHMWPE)纤维表面处理对UHMWPE/环氧树脂复合材料界面性能的影响机制[J].复合材料学报, 2020, 37(3):573-580.
JIA Caixia, WANG Qian, REN Rong, et al. Influence Mechanism of Ultra High Molecular Weight Polyethylene(UHMWPE) Fiber Surface Modification on Interfacial Performance of UHMWPE/Epoxy Composites[J]. Acta Materiae Compositae Sinica, 2020, 37(3):573-580.
[15]周先辉,孙友松,王万顺.CF/PTFE纤维混编织物增强环氧复合材料干摩擦特性[J].摩擦学学报,2016,36(5):650-658.
ZHOU Xianhui, SUN Yousong, WANG Wanshun. Dry Tribological Property of Carbon/Polyte-trafluoroethylene Hybrid Fabric Reinforced Epoxy Composite [J]. Tribology, 2016, 36(5):650-658.
[16]刘超锋.国内自润滑轴承用材料的研究和开发[J].铸造技术,2006,27(4):416-420.
LIU Chaofeng. Advance in Research and Development of Self-lubricating Composite Used by Bearing Materials in China [J]. Foundry Technology, 2006, 27(4):416-420.
[17]BIJWE J, RATTAN R. Influence of Weave of Carbon Fabric in Polyetherimide Composites in Various Wear Situations [J]. Wear, 2007, 263(7/12):984-991.
[18]潘广镇,齐乐华,付业伟,等.碳纤维布复合材料摩擦性能研究进展[J].中国材料进展,2015, 34(6):453-461.
PAN Guangzhen, QI Lehua, FU Yewei, et al. Progress in Tribological Properties of Carbon Fabric Composites [J]. Materials China, 2015, 34(6):453-461.
[19]徐虹,张可,卢岩,等.玄武岩纤维-碳纤维混杂平纹织物增强环氧树脂基复合材料的制备与力学性能[J].复合材料学报,2018,35(4):767-773.
XU Hong, ZHANG Ke, LU Yan, et al. Preparation and Mechanical Property of Carbon-basalt Hybrid Fiber Plain Fabric Reinforced Epoxy Resin Matrix Composites. [J]. Acta Materiae Compositae Sinica, 2018, 35(4):767-773.
[20]中国国家标准化管理委员会. 胶粘剂拉伸剪切强度测定方法(金属对金属):GB 7124—1986 [S]. 北京:中国标准出版社, 1987.
Standardization Administration of Peoples Republic of China. The Method for Determination of Strength Properties of Adhesive in Shear by Tension Loading (Metal to Metal):GB 7124—1986 [S]. Beijing:Standards Press of China, 1987.
[21]YANG Z , GUO Z , YANG Z , et al. Study on Tribological Properties of a Novel Composite by Filling Microcapsules into UHMWPE Matrix for Water Lubrication[J]. Tribology International, 2021, 153:106629.
[22]ISO. Ships and Marine Technology-hinged Watertight Doors:ISO 17940—2015 [S]. Geneva:International Organization for Standardization, 2015.
[23]CHANG T, YUAN C, GUO Z, Tribological Behavior of Aged UHMWPE under Water-lubricated Condition [J]. Tribology International, 2019, 133:1-11.
[24]SHAN L, WANG Y, LI J, et al. Tribological Behaviours of PVD TiN and TiCN Coatings in Artificial Seawater[J]. Surface and Coatings Technology, 2013, 226:40-50.[25]ISO. Geometrical Product Specifications (GPS)-Surface Texture:Areal—Part 2 Terms, Definitions and Surface Texture Parameters :ISO 25178-2 [S]. Geneva:International Organization for Stand-ardization, 2012.
[26]万理想,丁保华,徐军,等.多绳摩擦提升机衬垫硬度对摩擦因数影响的试验研究[J].煤矿机械,2008(8):31-33.
WAN Lixiang, DING Baohua, XU Jun, et al. Experimental Investigation of Multirope Friction Hoist Lining Hardness Effect on Friction Coefficient. [J]. Coal Mine Machinery, 2008(8):31-33.
[27]于澍,张红波,熊翔,等.炭/炭刹车副表面硬度对摩擦磨损性能的影响[J].功能材料,2006(9):1459-1462.
YU Shu, ZHANG Hongbo,XIONG Xiang, et al. The Study of Tribological Properties of Carbon/Carbon Composites with Different Surface Hardness [J]. Journal of Functional Materials, 2006(9):1459-1462.
|