China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2927-2935.DOI: 10.3969/j.issn.1004-132X.2025.12.015
Min LUO(
), Congjian HUANG, Qiaozheng LI(
), Tingting XU, Yanbo FU
Received:2025-02-04
Online:2025-12-25
Published:2025-12-31
Contact:
Qiaozheng LI
通讯作者:
李巧珍
作者简介:罗敏,女,1968年生,教授、博士研究生导师。研究方向为杆管柱力学分析。E-mail:jiayin5@sina.com基金资助:CLC Number:
Min LUO, Congjian HUANG, Qiaozheng LI, Tingting XU, Yanbo FU. Investigation of Factors Influencing Expandable Tubes Milling Based on SPH-FEM Coupling Algorithms[J]. China Mechanical Engineering, 2025, 36(12): 2927-2935.
罗敏, 黄聪剑, 李巧珍, 徐亭亭, 付彦博. 基于光滑粒子流体动力学-有限元法耦合算法的膨胀管磨铣效果影响因素研究[J]. 中国机械工程, 2025, 36(12): 2927-2935.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.12.015
| 部件 | 参数 | 数值 |
|---|---|---|
| 磨鞋体 | 高度/mm | 20 |
| 直径×壁厚/mm | ||
| 磨粒 | 前角 | 15 |
| 后角 | 5 | |
| 长度L/mm | 2 | |
| 高度h/mm | 1 | |
| 厚度 | 0.2~1.0 | |
| 膨胀管 | 长度/mm | 60 |
| 直径×壁厚/mm | ||
| 套管 | 长度/mm | 60 |
| 直径×壁厚/mm | ||
| 水泥环 | 长度/mm | 60 |
| 直径×壁厚/mm | ||
| 磨削参数 | 磨削深度 | 0.2~1.0 |
| 磨削厚度 | 0.2~1.0 |
Tab.1 Dimensions of each component
| 部件 | 参数 | 数值 |
|---|---|---|
| 磨鞋体 | 高度/mm | 20 |
| 直径×壁厚/mm | ||
| 磨粒 | 前角 | 15 |
| 后角 | 5 | |
| 长度L/mm | 2 | |
| 高度h/mm | 1 | |
| 厚度 | 0.2~1.0 | |
| 膨胀管 | 长度/mm | 60 |
| 直径×壁厚/mm | ||
| 套管 | 长度/mm | 60 |
| 直径×壁厚/mm | ||
| 水泥环 | 长度/mm | 60 |
| 直径×壁厚/mm | ||
| 磨削参数 | 磨削深度 | 0.2~1.0 |
| 磨削厚度 | 0.2~1.0 |
| 力学性能 | 膨胀管 | 磨粒 | 水泥环 |
|---|---|---|---|
| 密度/(kg·m | 8000 | 14 500 | 2300 |
| 弹性模量/GPa | 193 | 640 | 40 |
| 泊松比 | 0.27 | 0.22 | 0.23 |
Tab.2 Mechanical properties of various components materials
| 力学性能 | 膨胀管 | 磨粒 | 水泥环 |
|---|---|---|---|
| 密度/(kg·m | 8000 | 14 500 | 2300 |
| 弹性模量/GPa | 193 | 640 | 40 |
| 泊松比 | 0.27 | 0.22 | 0.23 |
| A/MPa | B/MPa | n | C | m | d1 | d2 | d3 | d4 | d5 |
|---|---|---|---|---|---|---|---|---|---|
| 514 | 514 | 0.0417 | 0.508 | 0.533 | 0.55 | 3.44 | -2.12 | 0.002 | 0.61 |
Tab.3 Johnson-Cook constitutive model of expanding casing material
| A/MPa | B/MPa | n | C | m | d1 | d2 | d3 | d4 | d5 |
|---|---|---|---|---|---|---|---|---|---|
| 514 | 514 | 0.0417 | 0.508 | 0.533 | 0.55 | 3.44 | -2.12 | 0.002 | 0.61 |
| 磨削深度δ/mm | 磨削单元数量 | 材料去除率/% | |
|---|---|---|---|
| 理论 | 数值模拟 | ||
| 0.2 | 995 | 942 | 94.67 |
| 0.4 | 1849 | 1718 | 92.92 |
| 0.6 | 2778 | 2416 | 86.97 |
| 0.8 | 3711 | 3136 | 84.51 |
| 1.0 | 4647 | 3603 | 77.53 |
Tab.4 Material removal at different grinding depths
| 磨削深度δ/mm | 磨削单元数量 | 材料去除率/% | |
|---|---|---|---|
| 理论 | 数值模拟 | ||
| 0.2 | 995 | 942 | 94.67 |
| 0.4 | 1849 | 1718 | 92.92 |
| 0.6 | 2778 | 2416 | 86.97 |
| 0.8 | 3711 | 3136 | 84.51 |
| 1.0 | 4647 | 3603 | 77.53 |
| 磨削厚度t1/mm | 磨削单元数量 | 材料去除率/% | |
|---|---|---|---|
| 理论 | 数值模拟 | ||
| 0.2 | 1849 | 1718 | 92.92 |
| 0.4 | 3698 | 3345 | 90.45 |
| 0.6 | 5546 | 4966 | 89.54 |
| 0.8 | 7395 | 6243 | 84.42 |
| 1.0 | 9244 | 7459 | 80.69 |
Tab.5 Material removal at different grinding thicknesses
| 磨削厚度t1/mm | 磨削单元数量 | 材料去除率/% | |
|---|---|---|---|
| 理论 | 数值模拟 | ||
| 0.2 | 1849 | 1718 | 92.92 |
| 0.4 | 3698 | 3345 | 90.45 |
| 0.6 | 5546 | 4966 | 89.54 |
| 0.8 | 7395 | 6243 | 84.42 |
| 1.0 | 9244 | 7459 | 80.69 |
| 几何形状 | 磨削单元数量 | 材料去除率/% | |
|---|---|---|---|
| 理论 | 数值模拟 | ||
| 六面体 | 3363 | 2856 | 84.92 |
| 十棱柱 | 2995 | 89.06 | |
| 十二棱柱 | 3115 | 92.63 | |
| 圆柱 | 4081 | 121.35 | |
Tab. 6 Removal of grinding and milling materials with different geometries
| 几何形状 | 磨削单元数量 | 材料去除率/% | |
|---|---|---|---|
| 理论 | 数值模拟 | ||
| 六面体 | 3363 | 2856 | 84.92 |
| 十棱柱 | 2995 | 89.06 | |
| 十二棱柱 | 3115 | 92.63 | |
| 圆柱 | 4081 | 121.35 | |
| 铺焊材料 | YG8合金 | YT15合金 | YG6X合金 |
|---|---|---|---|
| 密度/(kg·m | 14 500 | 11 900 | 14 850 |
| 弹性模量/GPa | 650 | 534 | 640 |
| 泊松比 | 0.25 | 0.22 | 0.22 |
Tab.7 Mechanical properties of surfacing materials
| 铺焊材料 | YG8合金 | YT15合金 | YG6X合金 |
|---|---|---|---|
| 密度/(kg·m | 14 500 | 11 900 | 14 850 |
| 弹性模量/GPa | 650 | 534 | 640 |
| 泊松比 | 0.25 | 0.22 | 0.22 |
| [1] | 强杰,齐月魁,刘雪光,等.膨胀管补贴技术在大港油田的应用研究 [J]. 石油机械,2021,49(9):105-112. |
| QIANG Jie, QI Yuekui, LIU Xueguang, et al. Research on the Application of Expansion Pipe Patch Technology in Dagang Oilfield [J]. China Petroleum Machinery, 2021, 49(9): 105-112. | |
| [2] | KHAN R. Design and Optimization of Multistage Tubular-mandrel System for Down-hole Expandable Tubular [J]. Arabian Journal for Science and Engineering, 2021, 46(3): 2083-2095. |
| [3] | 蒋海,林铁军,宋琳,等.反向水眼磨鞋数值模拟研究及结构设计 [J]. 石油机械,2022,50(9):52-58. |
| JIANG Hai, LIN Tiejun, SONG Lin, et al. Numerical Simulation and Structural Design of Reverse Nozzle Milling Shoe [J]. China Petroleum Machinery, 2022, 50(9): 52-58. | |
| [4] | 孙林平,伍世云,潘刚,等.磨鞋单齿正交切削三维力学模型分析 [J]. 工具技术,2018,52(11):118-121. |
| SUN Linping, WU Shiyun, PAN Gang, et al. Analysis of Three-dimensional Mechanical Model of Single-tooth Orthogonal Cutting of Grinding Shoe [J]. Tool Engineering, 2018, 52(11): 118-121. | |
| [5] | 车家琪,王旱祥,张砚雯,等.油气井磨铣工具的性能评价及工作参数优选[J].天然气工业,2021,41(2):140-148. |
| CHE Jiaqi, WANG Hanxiang, ZHANG Yanwen, et al. Performance Evaluation and Working Parameter Optimization of Milling Tools for Oil and Gas Wells[J]. Natural Gas Industry, 2021, 41(2):140-148. | |
| [6] | 车家琪,王旱祥,张砚雯,等.磨粒布齿角度对旋进式修井磨鞋工作特性影响规律[J].石油学报,2023,44(10):1727-1738. |
| CHE Jiaqi, WANG Hanxiang, ZHANG Yanwen, et al. Influence Law of Abrasive Grain Cutting Angle on the Working Characteristics of Slope Milling Tool for Workover [J]. Acta Petrolei Sinica, 2023, 44(10): 1727-1738. | |
| [7] | 车家琪,王旱祥,张砚雯,等.热力耦合作用下修井磨鞋产热规律与控温方法 [J]. 中国石油大学学报(自然科学版),2023,47(3):132-141. |
| CHE Jiaqi, WANG Hanxiang, ZHANG Yanwen, et al. Heat Production Law and Temperature Control Method of Milling Tools for Workover under the Action of Thermo-mechanical Coupling [J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3): 132-141. | |
| [8] | 贾晨曦.单磨粒磨铣工具磨削机理及工作参数影响分析 [D]. 青岛:中国石油大学(华东),2020. |
| JIA Chenxi. Impact Analysis of Single Grain Milling Tool Grinding Mechanism and Working Parameters [D]. Qingdao:China University of Petroleum (East China), 2020. | |
| [9] | 杜宇超,梁志强,王飞,等. PCD微细铣磨刀具切削力建模与加工性能研究 [J]机械工程学报, 2024, 60(19): 298-309. |
| DU Yucao, LIAN Zhiqiang, WANG Fei, et al. Research on Cutting Force Modeling and Cutting Performance of PCD Micro Milling-grinding Combined Machining Tool [J]. Journal of Mechanical Engineering, 2024, 60(19): 298-309. | |
| [10] | 范梓良.单颗磨粒高速磨削AISI 1045钢磨削机理的仿真与实验研究 [D]. 太原:太原理工大学,2018. |
| FAN Ziliang. Simulation and Experimental Study on Grinding Mechanism of High-speed Grinding AISI 1045 Steel with Single Abrasive Grain [D]. Taiyuan: Taiyuan University of Technology, 2018. | |
| [11] | MAZEN A Z, MUJTABA I M, HASSUNPOUR A, et al. Mathematical Modelling of Performance and Wear Prediction of PDC Drill Bits: Impact of Bit Profile, Bit Hydraulic, and Rock Strength [J]. Journal of Petroleum Science and Engineering, 2020, 188: 106849. |
| [12] | LUCY L B. A Numerical Approach to the Testing of the Fission Hypothesis [J]. Astronomical Journal, 1977, 82: 1013-1024. |
| [13] | 张志春,强洪夫,高巍然,等.一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用 [J]. 爆炸与冲击,2011,31(3):243-249. |
| ZHANG Zhichun, QIANG Hongfu, GAO Weiran, et al. a New SPH-FEM Coupling Algorithm and Its Application in Impact Dynamics Problems [J]. Explosion and Shock Waves, 2011, 31(3): 243-249. | |
| [14] | 葛涛涛,赵展,牛晓峰,等.基于SPH-FEM耦合方法的挤压铸造数值模拟 [J]. 特种铸造及有色合金,2024,44(7):909-916. |
| GE Taotao, ZHAO Zhan, Niu Xiaofeng, et al. Numerical Simulation of Squeeze Casting Based on SPH-FEM Coupling Method [J]. Special Casting and Nonferrous Alloys, 2024, 44(7): 909-916. | |
| [15] | 段念,王文珊,于怡青,等.基于FEM与SPH耦合算法的单颗磨粒切削玻璃的动态过程仿真 [J]. 中国机械工程, 2013, 24(20): 2716-2721. |
| DUAN Nian, WANG Wenshan, YU Yiqing, et al. Dynamic Process Simulation of Single Abrasive Grain Cutting Glass Based on the Coupling Algorithm of FEM and SPH [J]. China Mechanical Engineering, 2013, 24(20): 2716-2721. | |
| [16] | GENG X, DOU W, DENG J, et al. Simulation of the Cutting Sequence of AISI 316L Steel Based on the Smoothed Particle Hydrodynamics Method [J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 643-650. |
| [1] |
LU Kai-Jiang, SHI Dun-Beng, ZHANG Feng-Chao.
Dynamics Optimization Design of Planar 3-DOF Parallel Mechanism
[J]. J4, 201016, 21(16): 1926-1931.
|
| [2] | Xu DANG, Tao LIU, Min YAN, Zhiwei XU. Multi-objective Optimization of Precision Milling Parameters for Variable Cross-section Scrolls [J]. China Mechanical Engineering, 2025, 36(12): 2854-2861. |
| [3] | Tao NI, Yahui ZHAO, Zeren ZHAO, Kaiqiang YANG. Dynamics Modeling and Base Dynamics Parameter Determination of 6-UPRU Parallel Manipulators [J]. China Mechanical Engineering, 2025, 36(12): 2911-2919. |
| [4] | Shuai MO, Xuan HUANG, Wenbin LIU, Wei ZHANG. Nonlinear Dynamics of Continuously Tunable Planetary Gear Metamaterial [J]. China Mechanical Engineering, 2025, 36(11): 2509-2516. |
| [5] | Bo ZHANG, Mingxia CHENG, Yunfan SHI, Li CHEN. Dynamics Response of Super-harmonic Resonance of a Pre-deformed Jeffcott Cracked Rotor [J]. China Mechanical Engineering, 2025, 36(11): 2554-2562. |
| [6] | Weiwei LIU, Kuo LI, Hongji WANG, Xi YU. Research on Stochastic Nonlinear Optimal Control of Maglev Trains [J]. China Mechanical Engineering, 2025, 36(11): 2583-2592. |
| [7] | Song ZHANG, Chaoyong ZHANG, Chuanjun ZHU, Saixiyalatu BAO. In-situ Monitoring Method of Milling Cutter Wear Based on Spatial Attention Mechanism U-Net [J]. China Mechanical Engineering, 2025, 36(11): 2720-2727. |
| [8] | Tianyu MA, Gu GONG, Hongrui CAO, Jianghai SHI, Xunkai WEI, Lijun ZHANG. Molecular Dynamics Simulation of Microscopic Crack Initiation and Extension Mechanism in 8Cr4Mo4V Bearing Steels [J]. China Mechanical Engineering, 2025, 36(10): 2179-2189. |
| [9] | Zhaobo PENG, Jinxing KONG, Dongxing DU, Hankun LUO, Hen YUE. Experimental and Molecular Dynamics Simulation for Mechanics Properties of 45 Steel Treated by Plasma [J]. China Mechanical Engineering, 2025, 36(10): 2190-2197. |
| [10] | Zuqing YU, Tingyu QI, Zhuo LIU, Qinglong TIAN. Deformation/Attitude Coupling Dynamics and Control of Space Membrane Antennas [J]. China Mechanical Engineering, 2025, 36(10): 2284-2291. |
| [11] | Jingjing CHEN, Sha CHEN, Haiyan ZHU, Junjun YUAN, Zeyu LUO. Mechanism Analysis of Material Remove and Subsurface Layer Damages for SiC during Nanocutting Processes [J]. China Mechanical Engineering, 2025, 36(10): 2312-2321. |
| [12] | Yingjie QI, Wei LI, Zenghua LIU, Yabo ZHOU, Zefeng WEN. Sensitive Wavelength Analyses of Track Geometryic Irregularities for Metro Vehicle Swayings [J]. China Mechanical Engineering, 2025, 36(09): 1925-1933. |
| [13] | Shanshan LI, Xingwei SUN, Heng YANG, Heting QIAO. Research on Nonlinear Wear Behavior of Sealing Pairs in Magnetorheological Fluid Environment [J]. China Mechanical Engineering, 2025, 36(09): 1968-1979. |
| [14] | Jinyu ZHOU, Yifei CHEN. Prediction of Fatigue Property of SLM Metal Parts Based on Multi-scale Simulations [J]. China Mechanical Engineering, 2025, 36(09): 2087-2096. |
| [15] | YI Yali1, 2, CHENG Yangyang2, CHEN Xiaowei2, CHEN Yifan2, ZHANG Zhendong2, JIN Herong1, 2. A Determining Method for Milling Robot Poses Based on Principles of Maximum Stiffness [J]. China Mechanical Engineering, 2025, 36(07): 1544-1552. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||