China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (9): 2087-2096.DOI: 10.3969/j.issn.1004-132X.2025.09.021
Received:
2024-09-24
Online:
2025-09-25
Published:
2025-10-15
Contact:
Jinyu ZHOU
通讯作者:
周金宇
作者简介:
周金宇*(通信作者),男,1973年生,教授。研究方向为机械可靠性、增材制造、现代设计方法。E-mail:yuhangyuan888@sina.com。
基金资助:
CLC Number:
Jinyu ZHOU, Yifei CHEN. Prediction of Fatigue Property of SLM Metal Parts Based on Multi-scale Simulations[J]. China Mechanical Engineering, 2025, 36(9): 2087-2096.
周金宇, 陈逸飞. 基于多尺度模拟的选区激光熔化金属件疲劳性能预测[J]. 中国机械工程, 2025, 36(9): 2087-2096.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.09.021
气孔序号 | 气孔投影面积/μm2 | 最大Mises 应力/MPa | |
---|---|---|---|
横向加载 | 纵向加载 | ||
1 | 295 | 684 | |
295 | 678 | ||
2 | 310 | 627 | |
275 | 565 | ||
3 | 415 | 627 | |
405 | 621 |
Tab.1 Maximum Mises stresses near pore defects under tensile loading
气孔序号 | 气孔投影面积/μm2 | 最大Mises 应力/MPa | |
---|---|---|---|
横向加载 | 纵向加载 | ||
1 | 295 | 684 | |
295 | 678 | ||
2 | 310 | 627 | |
275 | 565 | ||
3 | 415 | 627 | |
405 | 621 |
气孔 序号 | 气孔投影 面积/μm2 | 缺陷至表面 距离/μm | 应力强度 因子/(MPa·m1/2) |
---|---|---|---|
1 | 295(横向加载) | 30 | 103.2 |
295(纵向加载) | 30 | 102.4 | |
2 | 310(横向加载) | 37 | 95.9 |
275(纵向加载) | 34 | 83.8 | |
3 | 415(横向加载) | 40 | 103.1 |
405(纵向加载) | 40 | 101.5 |
Tab.2 Stress intensity factors of pore defects
气孔 序号 | 气孔投影 面积/μm2 | 缺陷至表面 距离/μm | 应力强度 因子/(MPa·m1/2) |
---|---|---|---|
1 | 295(横向加载) | 30 | 103.2 |
295(纵向加载) | 30 | 102.4 | |
2 | 310(横向加载) | 37 | 95.9 |
275(纵向加载) | 34 | 83.8 | |
3 | 415(横向加载) | 40 | 103.1 |
405(纵向加载) | 40 | 101.5 |
[1] | 吴圣川, 胡雅楠, 杨冰, 等. 增材制造材料缺陷表征及结构完整性评定方法研究综述[J]. 机械工程学报, 2021, 57(22):3-34. |
WU Shengchuan, HU Yanan, YANG Bing, et al. Review on Defect Characterization and Structural Integrity Assessment Method of Additively Manufactured Materials[J]. Journal of Mechanical Engineering, 2021, 57(22):3-34. | |
[2] | 宋波, 张金良, 章媛洁, 等. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1):1-15. |
SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, et al. Research Progress of Materials Design for Metal Laser Additive Manufacturing[J]. Acta Metallurgica Sinica, 2023, 59(1):1-15. | |
[3] | GONG Haijun, RAFI K, GU Hengfeng, et al. Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting[J]. Materials & Design, 2015, 86:545-554. |
[4] | HU Y N, WU S C, WU Z K, et al. A New Approach to Correlate the Defect Population with the Fatigue Life of Selective Laser Melted Ti-6Al-4V Alloy[J]. International Journal of Fatigue, 2020, 136:105584. |
[5] | 张涛. 基于元胞自动机的BGA锡铅焊球凝固过程模拟研究[D]. 哈尔滨:哈尔滨理工大学, 2020. |
ZHANG Tao. Simulation Study of Solidification Process of BGA Tin-lead Solder Ball Based on Cellular Automaton[D]. Harbin:Harbin University of Science and Technology, 2020. | |
[6] | 王岩, 刘雨萌, 刘江伟, 等. 金属增材制造数值模拟研究进展[J]. 粉末冶金技术, 2022, 40(2):179-192. |
WANG Yan, LIU Yumeng, LIU Jiangwei, et al. Research Progress on Numerical Simulation of Metal Additive-manufacturing Process[J]. Powder Metallurgy Technology, 2022, 40(2):179-192. | |
[7] | 陶攀, 李怀学, 许庆彦, 等. 激光选区熔化工艺过程数值模拟的国内外研究现状[J]. 铸造, 2017, 66(7):695-701. |
TAO Pan, LI Huaixue, XU Qingyan, et al. Research Status of Numerical Simulation of Selective Laser Melting Process at Home and Abroad[J]. Foundry, 2017, 66(7):695-701. | |
[8] | 周辉. 镍基焊缝中高温失塑裂纹产生机制的晶体塑性研究[D]. 合肥:中国科学技术大学, 2019. |
ZHOU Hui. Crystal Plasticity Analysis of the Mechanism of Ductility Dip Cracking in Ni-based Weld Metal[D]. Hefei:University of Science and Technology of China, 2019. | |
[9] | HERZOG D, SEYDA V, WYCISK E, et al. Additive Manufacturing of Metals[J]. Acta Materialia, 2016, 117:371-392. |
[10] | 张云舒, 邵丹丹, 丁东红, 等. 层间强制冷却对电弧熔丝增材制造钛合金温度场和应力场的影响[J]. 电焊机, 2023, 53(2):111-116. |
ZHANG Yunshu, SHAO Dandan, DING Donghong, et al. Effect of Active Interpass Cooling on Temperature and Thermal Stress Evolution of Wire Arc Additively Manufactured Ti6Al4V Alloy[J]. Electric Welding Machine, 2023, 53(2):111-116. | |
[11] | PRIBE J D, RICHTER B, LESER P E, et al. A Process-structure-property Simulation Framework for Quantifying Uncertainty in Additive Manufacturing:Application to Fatigue in Ti-6Al-4V[J]. Integrating Materials and Manufacturing Innovation, 2023, 12(3):231-250. |
[12] | KÖRNER C, MARKL M, KOEPF J A. Modeling and Simulation of Microstructure Evolution for Additive Manufacturing of Metals:a Critical Review[J]. Metallurgical and Materials Transactions A, 2020, 51(10):4970-4983. |
[13] | GETLING A V. Rayleigh-Bénard Convection:Structures and Dynamics[M]. Singapore:World Scientific, 1998. |
[14] | KING W E, ANDERSON A T, FERENCZ R M, et al. Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges[J]. Applied Physics Reviews, 2015, 2(4):041304. |
[15] | 申梦清, 苗秉希, 牛晓峰. 316L不锈钢的激光选区熔化多道成形数值模拟研究[J]. 特种铸造及有色合金, 2022, 42(7):894-897. |
SHEN Mengqing, MIAO Bingxi, NIU Xiaofeng. Numerical Simulation of Multi-pass Laser Selective Melting Forming of 316L Stainless Steel[J]. Special Casting & Nonferrous Alloys, 2022, 42(7):894-897. | |
[16] | THÉVOZ P, DESBIOLLES J L, RAPPAZ M. Modeling of Equiaxed Microstructure Formation in Casting[J]. Metallurgical Transactions A, 1989, 20(2):311-322. |
[17] | 许林, 郭洪民, 杨湘杰. 元胞自动机法模拟铝合金三维枝晶生长[J]. 铸造, 2005, 54(6):575-578. |
XU Lin, GUO Hongmin, YANG Xiangjie. Simulating the Three-dimensional Dendritic Growth of Al Alloy Using the Cellular Automata Method[J]. Foundry, 2005, 54(6):575-578. | |
[18] | 支颖, 王振范, 刘相华. 元胞自动机在金属材料研究中的应用[M]. 北京:科学出版社, 2020. |
ZHI Ying, WANG Zhenfan, LIU Xianghua. Application of Cellular Automata in Research on Metal Materials[M]. Beijing:Science Press, 2020. | |
[19] | KURZ W, GIOVANOLA B, TRIVEDI R. Theory of Microstructural Development during Rapid Solidification[J]. Acta Metallurgica, 1986, 34(5):823-830. |
[20] | HU Y N, WU S C, WITHERS P J, et al. The Effect of Manufacturing Defects on the Fatigue Life of Selective Laser Melted Ti-6Al-4V Structures[J]. Materials & Design, 2020, 192:108708. |
[21] | OLIVEIRA J P, SANTOS T G, MIRANDA R M. Revisiting Fundamental Welding Concepts to Improve Additive Manufacturing:from Theory to Practice[J]. Progress in Materials Science, 2020, 107:100590. |
[22] | SERRANO-MUNOZ I, BUFFIERE J Y, MOKSO R, et al. Location, Location & Size:Defects Close to Surfaces Dominate Fatigue Crack Initiation[J]. Scientific Reports, 2017, 7:45239. |
[23] | DEZECOT S, MAUREL V, BUFFIERE J Y, et al. 3D Characterization and Modeling of Low Cycle Fatigue Damage Mechanisms at High Temperature in a Cast Aluminum Alloy[J]. Acta Materialia, 2017, 123:24-34. |
[24] | WALKER K F, LIU Q, BRANDT M. Evaluation of Fatigue Crack Propagation Behaviour in Ti-6Al-4V Manufactured by Selective Laser Melting[J]. International Journal of Fatigue, 2017, 104:302-308. |
[25] | LE V D, PESSARD E, MOREL F, et al. Fatigue Behaviour of Additively Manufactured Ti-6Al-4V Alloy:the Role of Defects on Scatter and Statistical Size Effect[J]. International Journal of Fatigue, 2020, 140:105811. |
[26] | MURAKAMI Y. Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions[M]. 2nd ed. Amsterdam:Elsevier, 2019. |
[27] | MURAKAMI Y, BERETTA S. Small Defects and Inhomogeneities in Fatigue Strength:Experiments, Models and Statistical Implications[J]. Extremes, 1999, 2(2):123-147. |
[28] | WU S C, SONG Z, KANG G Z, et al. The Kitagawa-Takahashi Fatigue Diagram to Hybrid Welded AA7050 Joints via Synchrotron X-ray Tomography[J]. International Journal of Fatigue, 2019, 125:210-221. |
[29] | KHAIRALLAH S A, ANDERSON A T, RUBENCHIK A, et al. Laser Powder-bed Fusion Additive Manufacturing:Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones[J]. Acta Materialia, 2016, 108:36-45. |
[30] | Du PLESSIS A. Effects of Process Parameters on Porosity in Laser Powder Bed Fusion Revealed by X-ray Tomography[J]. Additive Manufacturing, 2019, 30:100871. |
[31] | ANTONYSAMY A A, MEYER J, PRANGNELL P B. Effect of Build Geometry on the Β-grain Structure and Texture in Additive Manufacture of Ti6Al4V by Selective Electron Beam Melting[J]. Materials Characterization, 2013, 84:153-168. |
[32] | 廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51(3):648-701. |
LIAN Yanping, WANG Panding, GAO Jie, et al. Fundamental Mechanics Problems in Metal Additive Manufacturing:a State-of-art Review[J]. Advances in Mechanics, 2021, 51(3):648-701. |
[1] | JIANG Shijie1, 2, CAI Shanggang1, YING Hongwei1, CHEN Jiaqi1. Fatigue Property of 17-4PH Products Fabricated via Metal Material Extrusion Technique [J]. China Mechanical Engineering, 2025, 36(07): 1582-1591. |
[2] | LI Xinyu1, 2, 3, ZHOU Yonghua1, 2, 3. Mesoscale Numerical Simulation of SLM Processes for Al-Mn-Sc-Zr [J]. China Mechanical Engineering, 2025, 36(03): 584-592,603. |
[3] | ZHANG Zhenfeng2, 3, XU Xueshi1, LIN Zhongliang2, 3, TANG Wei2, 3, LI Haonan1, SHAN Longlong2, 3, BAI Qingshun1. Processing Experiments of Folding Defects and Fatigue Property in Short End Bolts [J]. China Mechanical Engineering, 2025, 36(01): 29-37. |
[4] | LEI Fuyu1, XU Xiaoxu2, ZHAO Yaming2, LUO Jun1, MA Chao1, XU Congchang1, LI Luoxing13. Influences of Loading Angle on Fatigue Characteristics and Failure Modes of Self-piercing Riveted Joints in Aluminum Alloy 6082 [J]. China Mechanical Engineering, 2025, 36(01): 141-151. |
[5] | ZHANG Luo1, LIU Mingming2, CHEN Ruimin1, DAN Peng1, GUO Nan1. Simulation and Experimental Study of Deformation Control of Large-size and Thin-wall Parts by SLM [J]. China Mechanical Engineering, 2024, 35(09): 1653-1658,1709. |
[6] | JIN Qichao1, 2, BAO Huzi1, LI Liangwan3, WANG Wenhu3, ZHANG Jinqi1, YE Ziyin1, GUO Lei1. Research on Influences of Surface Roughness and Hardening Rate on Fatigue Property in DD5 Creep Feed Grinding [J]. China Mechanical Engineering, 2024, 35(08): 1472-1479. |
[7] | JI Wenbin, DENG Riqing, DAI Shijie, LIU Chuncheng. Effects of Milling on Surface Integrity and Fatigue Performance of TC4 Titanium Alloy by SLM [J]. China Mechanical Engineering, 2023, 34(02): 208-217,225. |
[8] | . Layer Thickness for SLM of 3D Printed AlSi10Mg Alloys [J]. China Mechanical Engineering, 2022, 33(08): 959-964. |
[9] | ZENG Shoujin, WU Qirui, WEI Tieping, YE Jianhua, XU Yidan. Multi-objective Technological Optimization for Medical 316L Porous Structure by SLM [J]. China Mechanical Engineering, 2022, 33(06): 718-728. |
[10] | JIANG Yunlu, YANG Liang, HAN Xiaohui, XU Ye, CHEN Huaining, CAI Guixi. Influences of Service Conditions on Fatigue Properties of Stainless Steel Spot Welding and Cracking Analysis [J]. China Mechanical Engineering, 2021, 32(14): 1726-1731. |
[11] |
HUANG Renkai;DAI Ning;CHENG Xiaosheng.
Optimization of Support Structures Based on Numerical Simulation of SLM Temperature Field
[J]. China Mechanical Engineering, 2020, 31(19): 2346-2354.
|
[12] | WANG Guan1;ZHANG Qian2;KOU Linyuan1;LIU Zhiwen3;LI Shikang3. Nonlinear Topology Optimization of Continuum Structures Based on HCA Algorithm [J]. China Mechanical Engineering, 2020, 31(18): 2161-2173. |
[13] | SUN Songsong;WAN Maosong;XU Xiaomei;ZHANG Ying. Comparable Application of Different Strength Criterions in Crankshaft Fatigue Researches [J]. China Mechanical Engineering, 2019, 30(23): 2784-2789. |
[14] | LI Tuo1;BAI Hongbai1,2;XUE Xin2;WU Yiwan2. Fatigue Properties of Knitted\|dapped Metal Rubbers under High Temperature Environment [J]. China Mechanical Engineering, 2019, 30(09): 1009-1017. |
[15] | LIANG Pinghua1;Tang Qian1;YU Zhiqiang2;FENG Qixiang1;LIU Wei1. Gas Field Simulation and Flow Channel Structure Optimization of SLM [J]. China Mechanical Engineering, 2019, 30(07): 858-863. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||