中国机械工程 ›› 2026, Vol. 37 ›› Issue (1): 223-232.DOI: 10.3969/j.issn.1004-132X.2026.01.023

• 工程前沿 • 上一篇    

边缘场景下计及驾驶员认知处理过程的驾驶风险场模型构建

周彬1,2,3(), 杨志峰1, 张峻宁1, 董元发1,2,3(), 彭巍1,2,3   

  1. 1.三峡大学机械与动力学院, 宜昌, 443002
    2.水电机械设备设计与维护湖北省重点实验室, 宜昌, 443002
    3.三峡大学智能制造创新技术中心, 宜昌, 443002
  • 收稿日期:2024-12-20 出版日期:2026-01-25 发布日期:2026-02-05
  • 通讯作者: 董元发
  • 作者简介:周彬,男,1988年生,副教授。研究方向为人车共驾、车辆智能控制。发表论文40余篇。E-mail: zhoubin@ctgu.edu.cn
    董元发*(通信作者),男,1988年生,教授、博士研究生导师。研究方向为智能装备系统设计与优化。发表论文100余篇。E-mail: dongyf@ctgu.edu.cn
  • 基金资助:
    国家自然科学基金(52075292);湖北省自然科学基金(2022CFB798);湖北省自然科学基金(2023AFB1116)

Construction of Driving Risk Field Model Considering Driver Cognitive Processing in Edge Scenes

ZHOU Bin1,2,3(), YANG Zhifeng1, ZHANG Junning1, DONG Yuanfa1,2,3(), PENG Wei1,2,3   

  1. 1.School of Mechanical Engineering and Power Engineering,China Three Gorges University,Yichang,Hubei,443002
    2.Hubei Key Laboratory of Design and Maintenance of Hydropower Machinery and Equipment,Yichang,Hubei,443002
    3.Intelligent Manufacturing Innovation Technology Center,China Three Gorges University,Yichang,Hubei,443002
  • Received:2024-12-20 Online:2026-01-25 Published:2026-02-05
  • Contact: DONG Yuanfa

摘要:

人-车共驾过程中,驾驶员的情绪变化会导致认知变化,进而改变车辆风险场,为此构建了一种考虑驾驶员认知-情绪状态的人因风险场模型。首先通过驾驶模拟器实验收集并分析车辆行驶数据和驾驶员生理信号;随后标定人因风险场中的驾驶员因子;最后通过六自由度驾驶模拟器采集实验数据并对人因风险场风险指标与多传统风险指标进行对比。人因风险场模型在边缘场景下能更有效和稳定评估不同情绪驾驶员的行车风险。

关键词: 行车风险场, 边缘场景, 认知处理过程, 人因行为场

Abstract:

During the human-vehicle co-driving processes, driver's emotional changes would lead to cognitive changes, which in turn altered the vehicle risk field. Therefore, a human factor risk field model was constructed considering driver's cognitive-emotional state. Firstly, vehicle driving data and driver physiological signals were collected and analyzed through driving simulator experiments. Then, the driver factors in the human factor risk field were calibrated. Finally, experimental data were collected through a 6-DOF driving simulator, and the risk indicators of the human factor risk field were compared with multiple traditional risk indicators. The results show that the human factor risk field model is more effective and may evaluate the driving risks of drivers stably with different emotions in edge scenarios.

Key words: driving risk field, edge scene, cognitive processing, human factor risk field

中图分类号: