中国机械工程 ›› 2025, Vol. 36 ›› Issue (07): 1562-1572.DOI: 10.3969/j.issn.1004-132X.2025.07.019

• 智能制造 • 上一篇    下一篇

基于轴承退化状态评估和改进图注意力双向门控循环单元网络的轴承剩余寿命预测

宋李俊;刘松林;辛玉*;马婧华;谢正邱   

  1. 重庆理工大学机械工程学院,重庆,400054
  • 出版日期:2025-07-25 发布日期:2025-09-04
  • 作者简介:宋李俊,男,1974年生,副教授,硕士研究生导师。研究方向生产调度管理、故障诊断。发表论文50余篇。E-mail:sglijn@163.com。
  • 基金资助:
    国家自然科学基金(52205144);重庆市教育委员会科学技术研究项目(KJQN202101119);重庆市博士"直通车"科研项目(CSTB2022BSXM-JCX0163)

Residual Life Prediction for Bearings Based on Bearing Degradation State Assessment and IGAT-BiGRU Network

SONG Lijun;LIU Songlin;XIN Yu*;MA Jinghua;XIE Zhengqiu   

  1. School of Mechanical Engineering,Chongqing University of Technology,Chongqing,400054
  • Online:2025-07-25 Published:2025-09-04

摘要: 受工作条件和运行工况影响,滚动轴承全寿命周期的运行状态监测数据存在强噪声干扰,且轴承运行寿命退化呈非线性,严重影响剩余寿命预测的准确性。提出了一种结合高精度故障始发时刻退化状态评估和改进图注意力双向门控循环单元网络的轴承剩余寿命预测方法,并利用XJTU-SY全寿命周期轴承数据集验证了所提方法的有效性。研究结果表明,所提预测方法能有效捕获表征轴承退化状态的深度时空特征,与CNN-LSTM等方法相比,剩余寿命预测精度显著提高。

关键词: 滚动轴承, 故障始发时刻, 剩余寿命预测, 改进图注意力双向门控循环单元

Abstract: Due to the influences of working conditions and operating conditions, the collected status monitoring data was interfered with strong noise in full life cycle of rolling bearings, and the bearing operating life degradation was nonlinear, which seriously affected the accuracy of residual life prediction. So, a bearing residual life prediction method was proposed based on a joint high-precision FPT degradation state evaluation and an IGAT-BiGRU network, and the XJTU-SY full life cycle bearing dataset was used to verify the effectiveness of the proposed method. The results show that the proposed prediction method may effectively capture the deep spatiotemporal features that characterize the bearing degradation states, and significantly improve the residual life prediction accuracy, compared with methods such as CNN-LSTM.

Key words: rolling bearing, first predicting time(FPT), residual life prediction, improved graph attention bidirectional gate recurrent unit(IGAT-BiGRU)

中图分类号: