[1]WANG Gang, XIANG Jiawei. Remain Useful Life Prediction of Rolling Bearings Based on Exponential Model Optimized by Gradient Method[J]. Measurement, 2021, 176:109161.
[2]JIANG Li, ZHANG Tianao, LEI Wei, et al. A New Convolutional Dual-channel Transformer Network with Time Window Concatenation for Remaining Useful Life Prediction of Rolling Bearings[J]. Advanced Engineering Informatics, 2023, 56:101966.
[3]ZHANG Bin, ZHANG Shaohui, LI Weihua. Bearing Performance Degradation Assessment Using Long Short-term Memory Recurrent Network[J]. Computers in Industry, 2019, 106:14-29.
[4]WANG Biao, LEI Yaguo, LI Naipeng, et al. Deep Separable Convolutional Network for Remaining Useful Life Prediction of Machinery[J]. Mechanical Systems and Signal Processing, 2019, 134:106330.
[5]RAI A, UPADHYAY S H. Bearing Performance Degradation Assessment Based on a Combination of Empirical Mode Decomposition and K-medoids Clustering[J]. Mechanical Systems and Signal Processing, 2017, 93:16-29.
[6]NIKOLAOU N G, ANTONIADIS I A. Rolling Element Bearing Fault Diagnosis Using Wavelet Packets[J]. NDT & E International, 2002, 35(3):197-205.
[7]LI Qiang, YAN Changfeng, CHEN Guangyi, et al. Remaining Useful Life Prediction of Rolling Bearings Based on Risk Assessment and Degradation State Coefficient[J]. ISA Transactions, 2022, 129:413-428.
[8]LI Lele, XU Jiawang, LI Juguang. Estimating Remaining Useful Life of Rotating Machinery Using Relevance Vector Machine and Deep Learning Network[J]. Engineering Failure Analysis, 2023, 146:107125.
[9]CAO Yudong, DING Yifei, JIA Minping, et al. A Novel Temporal Convolutional Network with Residual Self-attention Mechanism for Remaining Useful Life Prediction of Rolling Bearings[J]. Reliability Engineering & System Safety, 2021, 215:107813.
[10]RATHORE M S, HARSHA S P. An Attention-based Stacked BiLSTM Framework for Predicting Remaining Useful Life of Rolling Bearings[J]. Applied Soft Computing, 2022, 131:109765.
[11]WANG Yaping, ZHAO Jiajun, YANG Chaonan, et al. Remaining Useful Life Prediction of Rolling Bearings Based on Pearson Correlation-KPCA Multi-feature Fusion[J]. Measurement, 2022, 201:111572.
[12]雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16):1-6.
LEI Yaguo, HAN Tianyu, WANG Biao, et al. XJTU-SY Rolling Element Bearing Accelerated Life Test Datasets:a Tutorial[J]. Journal of Mechanical Engineering, 2019, 55(16):1-6.
[13]HU Likun, HE Xujie, YIN Linfei. Remaining Useful Life Prediction Method Combining the Life Variation Laws of Aero-turbofan Engine and Auto-expandable Cascaded LSTM Model[J]. Applied Soft Computing, 2023, 147:110836.
[14]HOCHREITER S, SCHMIDHUBER J. Long Short-term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
|