中国机械工程 ›› 2025, Vol. 36 ›› Issue (07): 1553-1561.DOI: 10.3969/j.issn.1004-132X.2025.07.018

• 智能制造 • 上一篇    下一篇

滚动轴承的退化特征信息融合与剩余寿命预测

张建宇*;王留震;肖勇;马雅楠   

  1. 北京工业大学先进制造技术北京市重点实验室,北京,100124
  • 出版日期:2025-07-25 发布日期:2025-09-04
  • 作者简介:张建宇*,男,1975年生,副教授。研究方向为机电设备故障诊断、系统结构动力学分析。发表论文50余篇。E-mail:zhjy_1999@bjut.edu.cn。
  • 基金资助:
    国家自然科学基金(51675009)

Fusion of Degradation Feature Information and Remaining Life Prediction for Rolling Bearings

ZHANG Jianyu*;WANG Liuzhen;XIAO Yong;MA Yanan   

  1. Beijing Key Laboratory of Advanced Manufacturing Technology,Beijing University of Technology,
    Beijing,100124
  • Online:2025-07-25 Published:2025-09-04

摘要: 针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融合提取关键特征,消除冗余信息。同时,结合BiLSTM模型捕捉时序特征,实现全周期寿命预测。实验结果表明,所提模型优于支持向量回归、极限学习机、卷积神经网络等模型,预测误差更小,泛化能力更强。

关键词: 稀疏自编码器特征融合, 双向长短期记忆网络预测模型, 滚动轴承, 反双曲特征指标, 频域谐波退化因子

Abstract: To address the demands for remaining life prediction of rolling bearings, a prediction model was proposed based on SAE and BiLSTM network. Taking the full-life vibration data of rolling bearings as research object, a degradation index set was constructed by developing a hyperbolic inverse transformation-based health indicator and a frequency-domain harmonic degradation factor. The SAE was employed for feature fusion to extract key features and eliminate redundant information. Meanwhile, the BiLSTM model was utilized to capture temporal dependencies and achieve full-cycle life prediction. Experimental results demonstrate that the proposed model outperforms support vector regression, extreme learning machines, and convolutional neural networks in terms of smaller prediction errors and stronger generalization capabilities.

Key words:  , sparse autoencoder(SAE) feature fusion, bidirectional long short-term memory(BiLSTM) network predictive model, rolling bearing, inverse hyperbolic characteristic index, frequency domain harmonic degradation factor

中图分类号: