[1]GUO Kai, ZHANG Yiran, SUN Jie. Towards Stable Milling:Principle and Application of Active Contact Robotic Milling[J]. International Journal of Machine Tools and Manufacture, 2022, 182:103952.
[2]石龙, 周鹤翔, 李洲龙. 基于模糊线性自抗扰的薄壁件机器人铣削切深控制[J]. 中国机械工程, 2025, 36(4):671-680.
SHI Long, ZHOU Hexiang, LI Zhoulong. Depth of Cut Control for Thin-walled Parts in Robotic Milling Based on FLADRC[J]. China Mechanical Engineering, 2025, 36(4):671-680.
[3]王涛, 高雪峰, 祝景萍, 等. 机器人纵扭超声铣边颤振在线监测方法[J]. 航空学报, 2023, 44(13):427919.
WANG Tao, GAO Xuefeng, ZHU Jingping, et al. Chatter Online Monitoring of Robotic Longitudinal-torsional Ultrasonic Edge Trimming[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13):427919.
[4]何雨镐, 谢福贵, 刘辛军, 等. 大型构件机器人原位加工中的测量方案概述[J]. 机械工程学报, 2022, 58(14):1-14.
HE Yuhao, XIE Fugui, LIU Xinjun, et al. Review on Measurement Schemes for Robotic Machining of Large Components In-situ[J]. Journal of Mechanical Engineering, 2022, 58(14):1-14
[5]籍永建, 姚利诚. 机器人铣削加工颤振自适应识别方法研究[J]. 中国机械工程, 2023, 34(18):2165-2176.
JI Yongjian, YAO Licheng. Research on Self-adaptive Chatter Recognition Method for Robotic Milling[J]. China Mechanical Engineering, 2023, 34(18):2165-2176.
[6]陈钦韬, 殷参, 张加波, 等. 面向铣削任务的工业机器人刚度位姿优化[J]. 机器人, 2021, 43(1):90-100.
CHEN Qintao, YIN Shen, ZHANG Jiabo, et al. Pose Optimization of Industrial Robots Based on Stiffness for Milling Tasks[J]. Robot, 2021, 43(1):90-100.
[7]CVITANIC T, NGUYEN V, MELKOTE S N. PoseOptimization in Robotic Machining Using Static and Dynamic Stiffness Models[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66:101992.
[8]CHEN Chen, PENG Fangyu, YAN Rong, et al. Stiffness Performance Index Based Posture and Feed Orientation Optimization in Robotic Milling Process[J]. Robotics and Computer-Integrated Manufacturing, 2019, 55:29-40.
[9]XIONG Gang, DING Ye, ZHU Limin. Stiffness-based Pose Optimization of an Industrial Robot for Five-axis Milling[J]. Robotics and Computer-Integrated Manufacturing, 2019, 55:19-28.
[10]TAN Shizhong, YANG Jixiang, WU Chengxing, et al. Processing Accuracy Improvement of Robotic Ball-end Milling by Simultaneously Optimizing Tool Orientation and Robotic Redundancy[J]. Robotics and Computer-Integrated Manufacturing, 2025, 93:102904.
[11]LIAO Zhaoyang, WANG Qinghui, XIE Hailong, et al. Optimization of Robot Posture and Workpiece Setup in Robotic Milling with Stiffness Threshold[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(1):582-593.
[12]BU Yin, LIAO Wenhe, TIAN Wei, et al. Stiffness Analysis and Optimization in Robotic Drilling Application[J]. Precision Engineering, 2017, 49:388-400.
[13]杨靖, 张小俭, 吴毅, 等. 基于刚度定向的工业机器人铣削姿态优化研究[J]. 中国机械工程, 2022, 33(16):1957-1964.
YANG Jing, ZHANG Xiaojian, WU Yi, et al. Posture Optimization Based on Stiffness Orientation Method for Industrial Robotic Milling[J]. China Mechanical Engineering, 2022, 33(16):1957-1964.
[14]CRAIG J J. 机器人学导论[M]. 贠超, 王伟,译. 北京:机械工业出版社, 2018.
CRAIG J J. Introduction to Robotics[M]. Beijing:China Machine Press, 2018.
[15]WHITNEY D E. The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators[J]. Journal of Dynamic Systems, Measurement, and Control, 1972, 94(4):303-309.
[16]CHEN Bing, WANG Yanan, HU Shuhang, et al. A Whole-path Posture Optimization Method of Robotic Grinding Based on Multi-performance Evaluation Indices[J]. Robotics and Computer-Integrated Manufacturing, 2024, 89:102787.
|