[1]曾大懿, 杨基宏, 邹益胜, 等. 基于并行多通道卷积长短时记忆网络的轴承寿命预测方法[J]. 中国机械工程, 2020, 31(20):2454-2462.
ZENG Dayi, YANG Jihong, ZOU Yisheng, et al. Bearing Life Prediction Method Based on PMCCNN-LSTM[J]. China Mechanical Engineering, 2020, 31(20):2454-2462.
[2]YAN Bingxin, MA Xiaobing, HUANG Guifa, et al. Two-stage Physics-based Wiener Process Models for Online RUL Prediction in Field Vibration Data[J]. Mechanical Systems and Signal Processing, 2021, 152:107378.
[3]KONG Xuefeng, YANG Jun. Remaining Useful Life Prediction of Rolling Bearings Based on RMS-MAVE and Dynamic Exponential Regression Model[J]. IEEE Access, 2019, 7:169705-169714.
[4]ZHU Jun, CHEN Nan, SHEN Changqing. A New Data-driven Transferable Remaining Useful Life Prediction Approach for Bearing under Different Working Conditions[J]. Mechanical Systems and Signal Processing, 2020, 139:106602.
[5]杨小东, 纪国宜. 基于融合CNN的滚动轴承剩余寿命预测[J]. 国外电子测量技术, 2021, 40(3):62-67.
YANG Xiaodong, JI Guoyi. Remaining Useful Lifetime Prediction Method of Rolling Bearing Based on Fusion-CNN[J]. Foreign Electronic Measurement Technology, 2021, 40(3):62-67.
[6]付国忠, 杜华, 张志强, 等. 基于注意力机制和CNN-BiLSTM模型的滚动轴承剩余寿命预测[J]. 核动力工程, 2023, 44(增刊2):33-38.
FU Guozhong, DU Hua, ZHANG Zhiqiang, et al. Remaining Useful Life Prediction of Rolling Bearings Based on Attention Mechanism and CNN-BiLSTM[J]. Nuclear Power Engineering, 2023, 44(S2):33-38.
[7]王玉静, 李少鹏, 康守强, 等. 结合CNN和LSTM的滚动轴承剩余使用寿命预测方法[J]. 振动 测试与诊断, 2021, 41(3):439-446.
WANG Yujing, LI Shaopeng, KANG Shouqiang, et al. Method of Predicting Remaining Useful Life of Rolling Bearing Combining CNN and LSTM[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(3):439-446.
[8]WANG Biao, LEI Yaguo, LI Naipeng, et al. Deep Separable Convolutional Network for Remaining Useful Life Prediction of Machinery[J]. Mechanical Systems and Signal Processing, 2019, 134:106330.
[9]ZHU Jun, CHEN Nan, PENG Weiwen. Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4):3208-3216.
[10]沈天浩, 丁康, 黎杰, 等. 图结构联合时序数据驱动的装备剩余使用寿命预测方法[J]. 机械工程学报, 2023, 59(12):183-194.
SHEN Tianhao, DING Kang, LI Jie, et al. Graph Structure and Temporal Data Driven Remaining Useful Life Prediction Method for Machinery[J]. Journal of Mechanical Engineering, 2023, 59(12):183-194.
[11]VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[J]. arXiv, 2018:1710.10903.
[12]BRODY S, ALON U, YAHAV E. How Attentive Are Graph Attention Networks?[J]. arXiv, 2021:2105.14491.
[13]DRAGOMIRETSKIY K, ZOSSO D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[14]WANG Jun, WANG Wenchuan, HU Xiaoxue, et al. Black-winged Kite Algorithm:a Nature-inspired Meta-heuristic for Solving Benchmark Functions and Engineering Problems[J]. Artificial Intelligence Review, 2024, 57(4):98.
[15]GUO Xin, TU Jiesong, ZHAN Shengpeng, et al. A Novel Method for Online Prediction of the Remaining Useful Life of Rolling Bearings Based on Wavelet Power Spectrogram and Transformer Structure[J]. Engineering Research Express, 2023, 5(4):045074.
[16]KILLICK R, FEARNHEAD P, ECKLEY I A. Optimal Detection of Changepoints with a Linear Computational Cost[J]. Journal of the American Statistical Association, 2012, 107(500):1590-1598.
[17]左栋, 黄钊, 陈明, 等. 基于格拉姆角场与改进图卷积网络的滚动轴承故障诊断[J]. 装备制造技术, 2023(3):48-50.
ZUO Dong, HUANG Zhao, CHEN Ming, et al. Fault Diagnosis of Rolling Bearing Based on Gram Angular Field and Improved Graph Convolution Network[J]. Equipment Manufacturing Technology, 2023(3):48-50.
[18]段礼祥, 李涛, 唐瑜, 等. 基于多源异构信息融合的机械故障诊断方法[J]. 石油机械, 2021, 49(2):60-67.
DUAN Lixiang, LI Tao, TANG Yu, et al. Mechanical Fault Diagnosis Method Based on Multi-source Heterogeneous Information Fusion[J]. China Petroleum Machinery, 2021, 49(2):60-67.
[19]高艺源, 于德介, 王好将, 等. 基于图谱指标的滚动轴承故障特征提取方法[J]. 航空动力学报, 2018, 33(8):2033-2040.
GAO Yiyuan, YU Dejie, WANG Haojiang, et al. Fault Feature Extraction Method of Rolling Bearing Based on Spectral Graph Indices[J]. Journal of Aerospace Power, 2018, 33(8):2033-2040.
[20]WANG Biao, LEI Yaguo, LI Naipeng, et al. A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings[J]. IEEE Transactions on Reliability, 2020, 69(1):401-412.
[21]雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16):1-6.
LEI Yaguo, HAN Tianyu, WANG Biao, et al. XJTU-SY Rolling Element Bearing Accelerated Life Test Datasets:a Tutorial[J]. Journal of Mechanical Engineering, 2019, 55(16):1-6.
[22]宋浏阳, 金烨, 郭旭东, 等. 基于自适应权重时间卷积网络的剩余使用寿命预测方法[J]. 北京化工大学学报(自然科学版), 2024, 51(3):76-87.
SONG Liuyang, JIN Ye, GUO Xudong, et al. Remaining Useful Life Prediction Based on an Adaptive Weight Temporal Convolutional Network[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2024, 51(3):76-87.
[23]LI Tianfu, ZHOU Zheng, LI Sinan, et al. The Emerging Graph Neural Networks for Intelligent Fault Diagnostics and Prognostics:a Guideline and a Benchmark Study[J]. Mechanical Systems and Signal Processing, 2022, 168:108653.
[24]ZHOU Jianzhong, SHAN Yahui, LIU Jie, et al. Degradation Tendency Prediction for Pumped Storage Unit Based on Integrated Degradation Index Construction and Hybrid CNN-LSTM Model[J]. Sensors, 2020, 20(15):4277.
[25]杨超颖, 刘颉, 周凯波. 基于路图注意力网络的轴承剩余寿命预测方法[J]. 机械工程学报, 2023, 59(12):195-201.
YANG Chaoying, LIU Jie, ZHOU Kaibo. Path Graph Attention Network-based Bearing Remaining Useful Life Prediction Method[J]. Journal of Mechanical Engineering, 2023, 59(12):195-201.
[26]王朋飞, 刘长良, 徐健, 等. 基于图注意力和时间卷积网络的风电齿轮箱故障预警方法[J]. 电子测量与仪器学报, 2023, 37(8):204-213.
WANG Pengfei, LIU Changliang, XU Jian, et al. Wind Turbine Gearbox Fault Warning Method Based on Graph Attention and Temporal Convolutional Network[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(8):204-213.
|