中国机械工程 ›› 2025, Vol. 36 ›› Issue (01): 2-17.DOI: 10.3969/j.issn.1004-132X.2025.01.001
刘怀举*;卢泽华;朱才朝
出版日期:
2025-01-25
发布日期:
2025-02-21
作者简介:
刘怀举*,男,1986年生,教授、博士研究生导师。研究方向为高性能齿轮传动设计。发表论文120余篇。E-mail:huaijuliu@cqu.edu.cn。
基金资助:
LIU Huaiju*;LU Zehua;ZHU Caichao
Online:
2025-01-25
Published:
2025-02-21
摘要: 围绕塑料齿轮承载能力及在动力传动领域应用的问题,介绍了塑料齿轮的失效形式与承载能力,给出了目前的材料与工艺水平下塑料齿轮承载的基础数据,从新材料应用、润滑等工况条件改善、材料结构工况协同设计等方面阐述了提高塑料齿轮承载能力的措施,介绍了高承载塑料齿轮在汽车发动机传动、轻型车辆主传动、小型航发附件机匣传动等动力传动场景的应用实践和潜力。
中图分类号:
刘怀举, 卢泽华, 朱才朝. 塑料齿轮传动高承载技术发展与应用[J]. 中国机械工程, 2025, 36(01): 2-17.
LIU Huaiju, LU Zehua, ZHU Caichao. State-of-the-art and Trend of High Loading Capacity Plastic Gear Drives[J]. China Mechanical Engineering, 2025, 36(01): 2-17.
[1]HACHMAN H, STRICKLE E. Nylon Gears[J]. Konstruktion, 1966, 3(18):81-94. [2]NIEMANN G, WINTER H. Maschinenelement[M]. Berlin:Springer-Verlag, 1983. [3]KUROKAWA M, UCHIYAMA Y, NAGAI S. Performance of Plastic Gear Made of Carbon Fiber Reinforced Poly-ether-ether-ketone[J]. Tribology International, 1999, 32(9):491-497. [4]HOSKINS T J, DEARN K D, KUKUREKA S N, et al. Acoustic Noise from Polymer Gears—a Tribological Investigation[J]. Materials & Design, 2011, 32(6):3509-3515. [5]HASL C, ILLENBERGER C, OSTER P, et al. Potential of Oil-lubricated Cylindrical Plastic Gears[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2018, 12(1):JAMDSM0016. [6]WOOD A K, WILLIAMS V, WEIDIG R. The Relative Performance of Spur Gears Manufactured from Steel and PEEK[J]. Gear Technology, 2012,3(1):58-65. [7]LU Zehua, LIU Huaiju, ZHU Caichao, et al. Identification of Failure Modes of a PEEK-Steel Gear Pair under Lubrication[J]. International Journal of Fatigue, 2019, 125:342-348. [8]YU Guoda, LIU Huaiju, MAO Ken, et al. An Experimental Investigation on the Wear of Lubricated Steel against PEEK Gears[J]. Journal of Tribology, 2020, 142(4):041702. [9]LU Zehua, LI Zhenghao, LIU Huaiju, et al. An Accelerated Fatigue Test Method of Polymer Gears Based on Thermostress Conversion Relation[J]. Engineering Fracture Mechanics, 2022, 266:108388. [10]MAO K, CHETWYND D G, MILLSON M. A New Method for Testing Polymer Gear Wear Rate and Performance[J]. Polymer Testing, 2020, 82:106323. [11]BLAIS P, TOUBAL L. Single-gear-tooth Bending Fatigue of HDPE Reinforced with Short Natural Fiber[J]. International Journal of Fatigue, 2020, 141:105857. [12]LU Zehua, LIU Huaiju, WEI Peitang, et al. The Effect of Injection Molding Lunker Defect on the Durability Performance of Polymer Gears[J]. International Journal of Mechanical Sciences, 2020, 180:105665. [13]ZHONG Bingbing, ZHANG Renhua, WEI Peitang, et al. The Durability Performance of Polyketone Gears under Various Lubrication Conditions[J]. Journal of Tribology, 2022, 144(9):091203. [14]ZHONG Bingbing, SONG Hailan, LIU Huaiju, et al. Loading Capacity of POM Gear under Oil Lubrication[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2022, 16(1):JAMDSM0006. [15]CRIPPA G, DAVOLI P. Comparative Fatigue Resistance of Fiber Reinforced Nylon 6 Gears[J]. Journal of Mechanical Design, 1995, 117(1):193-198. [16]KODEESWARAN M, VERMA A, SURESH R, et al. Bi-directional and Uni-directional Bending Fatigue Performance of Unreinforced and Carbon Fiber Reinforced Polyamide 66 Spur Gears[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(8):1025-1033. [17]ZORKO D. Investigation on the High-cycle Tooth Bending Fatigue and Thermo-mechanical Behavior of Polymer Gears with a Progressive Curved Path of Contact[J]. International Journal of Fatigue, 2021, 151:106394. [18]LANDI L, STECCONI A, MORETTINI G, et al. Analytical Procedure for the Optimization of Plastic Gear Tooth Root[J]. Mechanism and Machine Theory, 2021, 166:104496. [19]van MELICK I H G H. Tooth-bending Effects in Plastic Spur Gears[J]. Gear Technology, 2007, 8:58-66. [20]HASL C, LIU Hua, OSTER P, et al. Method for Calculating the Tooth Root Stress of Plastic Spur Gears Meshing with Steel Gears under Consideration of Deflection-induced Load Sharing[J]. Mechanism and Machine Theory, 2017, 111:152-163. [21]URBAS U, ZORKO D, VUKAINOVIC' N. Machine Learning Based Nominal Root Stress Calculation Model for Gears with a Progressive Curved Path of Contact[J]. Mechanism and Machine Theory, 2021, 165:104430. [22]ZHANG Xiuhua, WEI Peitang, PARKER R G, et al. Study on the Relation between Surface Integrity and Contact Fatigue of Carburized Gears[J]. International Journal of Fatigue, 2022, 165:107203. [23]张秀华, 刘怀举, 朱才朝, 等. 基于数据驱动的零部件疲劳寿命预测研究现状与发展趋势[J]. 机械传动, 2021, 45(10):1-14. ZHANG Xiuhua, LIU Huaiju, ZHU Caizhao, et al. Current Situation and Developing Trend of Fatigue Life Prediction of Components Based on Data-driven[J]. Journal of Mechanical Transmission, 2021, 45(10):1-14. [24]CHEN Jie, LIU Yongming. Probabilistic Physics-guided Machine Learning for Fatigue Data Analysis[J]. Expert Systems with Applications, 2021, 168:114316. [25]CˇERNE B, LORBER R, DUHOVNIK J, et al. Influence of Temperature- and Strain Rate-dependent Viscoplastic Properties of Polyoxymethylene on the Thermo-mechanical Response of a Steel-polyoxymethylene Spur Gear Pair[J]. Materials Today Communications, 2020, 25:101078. [26]ROTHEMUND M, OTTO M, STAHL K. Applicability of Classic Analytical Calculation Approaches for the Design of Plastic Gears[J]. Forschung Im Ingenieurwesen, 2023, 87(3):987-995. [27]胡新磊, 刘怀举, 魏沛堂, 等. 基于标称齿轮当量载荷的聚合物齿轮齿面承载能力评价方法[J]. 中国机械工程, 2023, 34(24):2927-2935. HU Xinlei, LIU Huaiju, WEI Peitang, et al. An Evaluation Method for Tooth Surface Load Capacity of Polymer Gears Based on Nominal Gear Equivalent Load[J]. China Mechanical Engineering, 2023, 34(24):2927-2935. [28]LU Zehua, LIU Huaiju, ZHANG Renhua, et al. The Simulation and Experiment Research on Contact Fatigue Performance of Acetal Gears[J]. Mechanics of Materials, 2021, 154:103719. [29]DEARN K D, HOSKINS T J, ANDREI L, et al. Lubrication Regimes in High-performance Polymer Spur Gears[J]. Advances in Tribology, 2013, 2013:987251. [30]MOHSENZADEH R, SHELESH-NEZHAD K, CHAKHERLOU T N. Experimental and Finite Element Analysis on the Performance of Polyacetal/Carbon Black Nanocomposite Gears[J]. Tribology International, 2021, 160:107055. [31]ZORKO D, TAVCˇAR J, TURM R, et al. Investigation of the Durability and Performance of Autoclave-cured, Woven Carbon Fiber-reinforced Polymer Composite Gears in Mesh with a Steel Pinion[J]. Composite Structures, 2021, 273:114250. [32]BRAVO A, TOUBAL L, KOFFI D, et al. Gear Fatigue Life and Thermomechanical Behavior of Novel Green and Bio-composite Materials VS High-performance Thermoplastics[J]. Polymer Testing, 2018, 66:403-414. [33]ILLENBERGER C M, TOBIE T, STAHL K. Operating Behavior and Performance of Oil-lubricated Plastic Gears[J]. Forschung Im Ingenieurwesen, 2022, 86(3):557-565. [34]卢泽华, 刘怀举, 朱才朝, 等. 润滑和载荷状态对聚甲醛齿轮服役性能的影响[J]. 中国机械工程, 2021, 32(17):2047-2054. LU Zehua, LIU Huaiju, ZHU Caizhao, et al. Effects of Lubrication and Loading Levels on POM Gear Durability Performance[J]. China Mechanical Engineering, 2021, 32(17):2047-2054. [35]吴若, 魏沛堂, 谢怀杰, 等. 喷油润滑聚醚醚酮的接触疲劳性能[J]. 中国机械工程, 2024, 35(2):221-228. WU Ruo, WEI Peitang, XIE Huaijie, et al. Contact Fatigue Performance of PEEK under Oil-injected Lubrication[J]. China Mechanical Engineering, 2024, 35(2):221-228. [36]HLEBANJA G, HLEBANJA J, OKORN I. Research of Gears with Progressive Path of Contact[C]∥Proceedings of ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego, 2020:215-221. [37]LITVIN F L, LIAN Qiming, KAPELEVICH A L. Asymmetric Modified Spur Gear Drives:Reduction of Noise, Localization of Contact, Simulation of Meshing and Stress Analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 188(1/3):363-390. [38]ANAND MOHAN N, SENTHILVELAN S. Preliminary Bending Fatigue Performance Evaluation of Asymmetric Composite Gears[J]. Mechanism and Machine Theory, 2014, 78:92-104. [39]DEMET S M, ERSOYOGˇLU A S. An Analysis of the Effect of Pressure Angle Change on Bending Fatigue Performance in Asymmetrical Spur Gears[J]. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials:Design and Applications, 2021, 235(9):2142-2150. [40]KOIDE T, YUKAWA T, TAKAMI S, et al. Tooth Surface Temperature and Power Transmission Efficiency of Plastic Sine-curve Gear[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2017, 11(6):JAMDSM0082. [41]YOON J D, CHA S W, CHONG T H, et al. Study on the Accuracy of Injection Molded Plastic Gear with the Assistance of Supercritical Fluid and a Pressurized Mold[J]. Polymer-Plastics Technology and Engineering, 2007, 46(9):815-820. [42]SOLANKI B, SINGH H, SHEOREY T. Effect of Injection Molding Cycle Time on Shrinkage and Weight of Manufactured Polymer Gear[C]∥ Conference:International Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering. Punjab, 2022:621-630. [43]URBAS U, ZORKO D, VUKAINOVIC' N, et al. Comprehensive Areal Geometric Quality Characterisation of Injection Moulded Thermoplastic Gears[J]. Polymers, 2022, 14(4):705. [44]SENTHILVELAN S, GNANAMOORTHY R. Influence of Reinforcement on Composite Gear Metrology[J]. Mechanism and Machine Theory, 2008, 43(9):1198-1209. [45]SENTHILVELAN S, GNANAMOORTHY R. Fiber Reinforcement in Injection Molded Nylon 6/6 Spur Gears[J]. Applied Composite Materials, 2006, 13(4):237-248. [46]DRUMMER D, O.KOBES M, MERKEN D, et al. Wie das Spritzgieen den Verschlei bei Zahnrdern Reduziert[J]. Maschinen Markt, 2011, 20:13-19. [47]ZHANG Ye, PURSSELL C, MAO Ken, et al. A Physical Investigation of Wear and Thermal Characteristics of 3D Printed Nylon Spur Gears[J]. Tribology International, 2020, 141:105953. [48]ZHANG Ye, MAO Ken, LEIGH S, et al. A Parametric Study of 3D Printed Polymer Gears[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(11):4481-4492. [49]MENDI F, CAN H, KLEKCI M K. Fatigue Properties of Polypropylene Involute Rack Gear Reinforced with Metallic Springs[J]. Materials & Design, 2006, 27(5):427-433. [50]DZCKOGˇLU H. Study on Development of Polyamide Gears for Improvement of Load-carrying Capacity[J]. Tribology International, 2009, 42(8):1146-1153. [51]SINGH P K, SIDDHARTHA, SINGH A K. An Investigation on the Effects of the Various Techniques over the Performance and Durability of Polymer Gears[J]. Materials Today:Proceedings, 2017, 4(2):1606-1614. [52]GAUNTT S M, CAMPBELL R L. Characterization of a Hybrid (Steel-Composite) Gear with Various Composite Materials and Layups[C]∥AIAA Scitech 2019 Forum. Reston, Virginia, 2019:0146. [53]SIM E, KIM C, KWAK K S, et al. Optimum Interface Shape and Vibration Test for a New Transmission Helical Gear Composed of Steel and Aramid/Phenol Composite[J]. Journal of Mechanical Science and Technology, 2020, 34(4):1629-1634. [54]KLEISS R, FERFECKI F J. Designing a Polymer Gear for Use in the Environment of an Internal Combustion Engine[C]∥Proceedings of ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Washington D C, 2012:515-521. [55]NITSCH C, HHN B-R, STAHL K. Prospects of Compound-gears for E-mobility Applications Conference on Future Automotive Technology:Focus Electromobility[C]∥Conference on Future Automotive Technology. München, 2013:611-616. [56]REITSCHUSTER S, ILLENBERGER C M, TOBIE T, et al. Application of High Performance Polymer Gears in Light Urban Electric Vehicle Powertrains[J]. Forschung Im Ingenieurwesen, 2022, 86(4):683-691. [57]REITSCHUSTER S, TOBIE T, STAHL K. Experimental Verification of High-performance Polymer Gears in an Electric Vehicle Powertrain[J]. Forschung im Ingenieurwesen, 2023, 87(3):881-890. [58]LU Zehua, LIU Chang, LIAO Changjun, et al. Conceptual Design and Optimization of Polymer Gear System for Low-thrust Turbofan Aeroengine Accessory Transmission[J]. Journal of Computational Design and Engineering, 2023, 11(1):212-229. [59]LU Zehua, CHEN Yiming, LIU Huaiju, et al. A High-power-density Design Method for Polymer Gear Systems via an Adaptive Non-dominated Sorting Genetic Algorithm Ⅲ and Surrogate Sub-models[J]. Materials & Design, 2024, 240:112875. [60]CATHELIN J, LETZELTER E, GUINGAND M, et al. Experimental and Numerical Study of a Loaded Cylindrical PA66 Gear[J]. Journal of Mechanical Design, 2013, 135(4):041007. [61]MILER D, HOIC' M, KEC S, et al. Optimisation of Polymer Spur Gear Pairs with Experimental Validation[J]. Structural and Multidisciplinary Optimization, 2020, 62(6):3271-3285. [62]WU Ruo, WEI Peitang, LU Zehua, et al. A Comparative Study of Fatigue Behavior between S-shaped and Involute POM Gears[J]. Journal of Computational Design and Engineering, 2022, 9(6):2483-2494. [63]TAVCˇAR J, CˇERNE B, DUHOVNIK J, et al. A Multicriteria Function for Polymer Gear Design Optimization[J]. Journal of Computational Design and Engineering, 2021, 8(2):581-599. |
[1] | 万步炎1, 2, 彭奋飞1, 2, 3, 金永平1, 2 , 刘德顺1, 2 , 彭佑多1, 2. 海洋探测装备收放缆力学性能研究综述[J]. 中国机械工程, 2024, 35(09): 1521-1533. |
[2] | 胡新磊, 刘怀举, 魏沛堂, 卢泽华, 廖常军, 朱加赞. 基于标称齿轮当量载荷的聚合物齿轮齿面承载能力评价方法[J]. 中国机械工程, 2023, 34(24): 2927-2935. |
[3] | 吴紫俊, 肖人彬. 基于子结构的宏微结构协同优化方法[J]. 中国机械工程, 2022, 33(23): 2851-2858. |
[4] | 丛建臣, 倪培相, 孙军, 吕世杰. 内燃机曲轴扭转疲劳强度试验研究与分析[J]. 中国机械工程, 2022, 33(18): 2197-2204. |
[5] | 余国达, 刘怀举, 卢泽华, 魏沛堂. 脂润滑条件下塑料齿轮稳态温度场仿真与试验研究[J]. 中国机械工程, 2022, 33(08): 890-898,907. |
[6] | 卢泽华, 刘怀举, 朱才朝, 余国达, 钟兵兵. 润滑和载荷状态对聚甲醛齿轮服役性能的影响[J]. 中国机械工程, 2021, 32(17): 2047-2054. |
[7] | 江锦波;徐奇超;陈源;赵文静;彭旭东. 端面型槽广义对数螺旋线的通用模型与应用[J]. 中国机械工程, 2019, 30(22): 2661-2667. |
[8] | 陆龙生;张飞翔;唐恒;万珍平;汤勇. 基于优化承载能力的RV减速器摆线齿轮齿廓的等距-移距修形[J]. 中国机械工程, 2019, 30(17): 2022-2029. |
[9] | 孔璞萍;刘志平;周凯;毛艳飞. 起重机金属结构裂纹的复合修复方法[J]. 中国机械工程, 2018, 29(13): 1610-1614. |
[10] | 史恩秀;郭鹏阁;王海龙. 一种改善静压导轨机械特性的新方法[J]. 中国机械工程, 2016, 27(24): 3278-3282. |
[11] | 苑飞虎, 赵铁石, 赵延治, 翁大成. 并联机构承载能力分析[J]. 中国机械工程, 2015, 26(7): 871-877. |
[12] | 叶建华, 高诚辉, 江吉彬. 协同设计中CAD模型的安全控制[J]. 中国机械工程, 2014, 25(4): 444-450. |
[13] | 赵建华;高殿荣. 润滑油黏度对液体静压导轨性能的影响[J]. 中国机械工程, 2013, 24(21): 2847-2851. |
[14] | 赵建华1, 2, 高殿荣1, 2. 油膜厚度对闭式液体静压导轨性能的影响[J]. 中国机械工程, 2013, 24(11): 1421-1424,1430. |
[15] | 周安宁1, 2, 李文正2. 面向飞机协同设计的零部件成熟度评估方法[J]. 中国机械工程, 2013, 24(1): 61-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||