中国机械工程 ›› 2024, Vol. 35 ›› Issue (09): 1521-1533.DOI: 10.3969/j.issn.1004-132X.2024.09.001
万步炎1,2;彭奋飞1,2,3;金永平1,2 ;刘德顺1,2 ;彭佑多1,2
出版日期:
2024-09-25
发布日期:
2024-10-23
通讯作者:
金永平(通信作者),男,1984年生,教授、博士研究生导师。研究方向为海底作业机器人、海洋矿产资源探采装备与技术深渊海底生物、沉积物取样技术与装备、机械系统动力学与控制。E-mail:jinyongping@hnust.edu.cn。
作者简介:
万步炎,男,1964年生,教授、博士研究生导师。主要研究方向为海洋资源勘探技术、海洋采矿技术与装备、自动化仪器仪表、固体物料管道输送技术(矿山充填技术)。E-mail:cimrwby@vip.sina.com。
基金资助:
WAN Buyan1,2; PENG Fenfei1,2,3; JIN Yongping1,2; LIU Deshun1,2; PENG Youduo1,2
Online:
2024-09-25
Published:
2024-10-23
摘要: 收放缆是维系海底探测装备与船舶的唯一纽带,具备电力、信息传输以及承重等功能,被广泛用于各类收放系统。收放缆的安全可靠性是其核心功能要求,因此开展收放缆力学性能试验是整个收放缆研究的基础。从海洋绞车以及收放缆的种类、失效形式出发,系统总结了收放缆力学性能试验研究动态,展望其未来研究方向。对海洋绞车以及收放缆进行了功能分类并详细分析了收放缆失效的形式以及原因;阐述了收放缆服役环境工况及其力学性能要求与试验研究现状;探讨海洋探测装备收放缆的力学性能研究方向,从极端服役环境对合成纤维收放缆力学性能影响及其机制、多重载荷耦合作用下合成纤维收放缆破坏行为及其机理、收放缆力学性能技术与综合模拟装置等方面进行了展望。
中图分类号:
万步炎1, 2, 彭奋飞1, 2, 3, 金永平1, 2 , 刘德顺1, 2 , 彭佑多1, 2. 海洋探测装备收放缆力学性能研究综述[J]. 中国机械工程, 2024, 35(09): 1521-1533.
WAN Buyan1, 2, PENG Fenfei1, 2, 3, JIN Yongping1, 2, LIU Deshun1, 2, PENG Youduo1, 2. A Review of Mechanics Property Studies of Retracting and Releasing Cables for Marine Exploration Equipment[J]. China Mechanical Engineering, 2024, 35(09): 1521-1533.
[1]杨波, 刘烨瑶, 廖佳伟. 载人潜水器——面向深海科考和海洋资源开发利用的“国之重器”[J]. 中国科学院院刊, 2021, 36(5):622-631. YANG Bo, LIU Yeyao, LIAO Jiawei. Manned Submersibles—Deep-sea Scientific Research and Exploitation of Marine Resources[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(5):622-631. [2]刘德顺, 金永平, 万步炎, 等. 深海矿产资源岩芯探测取样技术与装备发展历程与趋势[J]. 中国机械工程, 2014, 25(23):3255-3265. LIU Deshun, JIN Yongping, WAN Buyan, et al. Review and Development Trends of Deep-sea Mineral Resource Core Sampling Technology and Equipment[J]. China Mechanical Engineering, 2014, 25(23):3255-3265. [3]佟寅, 桑巍. 应用高模量合成纤维缆的深海调查绞车系统设计[J]. 船舶工程, 2020, 42(6):109-113. TONG Yin, SANG Wei. Design of Winch System Applying HMSF for Deep Sea Surveys[J]. Ship Engineering, 2020, 42(6):109-113. [4]桑巍, 佟寅. 高模量合成纤维缆绳在海洋调查绞车上的应用[J]. 船舶, 2020, 31(6):1-8. SANG Wei, TONG Yin. Application of High Modulus Synthetic Fiber Ropes in Oceanographic Research Winches[J]. Ship & Boat, 2020, 31(6):1-8. [5]吴坤阳. 海洋科考船万米绞车设计与研究[D]. 舟山:浙江海洋大学, 2019. WU Kunyang. Design and Research of 10 000-meter Winch for Marine Scientific Research Ship[D].Zhoushan:Zhejiang Ocean University, 2019. [6]杨晓红. 6×36WS+IWR镀锌钢丝绳生产工艺研究[J]. 金属制品, 2019, 45(5):1-4. YANG Xiaohong. Research of Production Process of 6×36WS+IWR Galvanized Wire Rope[J]. Metal Products, 2019, 45(5):1-4. [7]ROY S, POTLURI P. Braiding:from Cordage to Composites[C]∥3rd Textile Research Conference(TRC). Dhaka City, 2016:12-15. [8]魏雅斐, 孙颖, 丁许, 等. 高性能纤维编织绳应变测试方法研究进展[J]. 产业用纺织品, 2021, 39(1):8-15. WEI Yafei, SUN Ying, DING Xu, et al. Research Progress on the Strain Measurement Methods of High Performance Fiber Braided Ropes[J]. Technical Textiles, 2021, 39(1):8-15. [9]王大刚, 张俊. 考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测研究[J]. 摩擦学学报, 2021, 41(5):710-722. WANG Dagang, ZHANG Jun. Prediction of Fretting Fatigue Crack Propagation Life of Steel Wire Considering Fretting Wear[J]. Tribology, 2021, 41(5):710-722. [10]连宇顺, 刘海笑. 深水系泊高强聚乙烯缆绳的蠕变及破断试验研究[J]. 海洋工程, 2016, 34(3):10-18. LIAN Yushun, LIU Haixiao. Creep and Creep-rupture Experimental Investigations of HMPE Ropes for Deepwater Moorings[J]. The Ocean Engineering, 2016, 34(3):10-18. [11]HASHIMOTO K, WATANABE M, TASHIRO S, et al. Missing of the ROV Kaiko Vehicle- problem on the Secondary Cable[C]∥Oceans04 MTS/IEEE Techno-Ocean04(IEEE Cat. No.04CH37600). Kobe, 2004:807-811. [12]客圣俊, 王慧, 宋宝, 等. 钢丝绳失效机理研究综述[J]. 现代制造技术与装备, 2018(1):1-4. KE Shengjun, WANG Hui, SONG Bao, et al. Review of the Research on Failure Mechanism of Wire Rope[J]. Modern Manufacturing Technology and Equipment, 2018(1):1-4. [13]余旷, 齐亮. 对位芳纶和聚芳酯纤维在高性能绳缆中的应用[J]. 合成纤维, 2020, 49(3):10-13. YU Kuang, QI Liang. Application of Para-aromatic Polyamide Fiber and Aromatic Polyester Fiber in High Performance Cable[J]. Synthetic Fiber in China, 2020, 49(3):10-13. [14]王安妮, 刘晓刚, 岳清瑞. 碳纤维增强树脂基复合材料及其拉索抗低速冲击性能综述[J]. 复合材料学报, 2022, 39(11):5049-5061. WANG Anni, LIU Xiaogang, YUE Qingrui. Low-velocity Impact Resistance of Carbon Fiber Reinforced Polymer Composite and Its Cables:a Review[J]. Acta Materiae Compositae Sinica, 2022, 39(11):5049-5061. [15]袁行飞, 杨柳, 张威加. 小直径钢丝绳常温蠕变性能研究[J]. 华中科技大学学报(自然科学版), 2021, 49(7):7-12. YUAN Xingfei, YANG Liu, ZHANG Weijia. Research on Creep Behavior of Small Diameter Wire Rope at Room Temperature[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2021, 49(7):7-12. [16]王臻, 贾贺, 高树义, 等. 芳Ⅲ编织绳动态拉伸性能研究[J]. 航天返回与遥感, 2023, 44(2):43-52. WANG Zhen, JIA He, GAO Shuyi, et al. Study on Dynamic Tensile Properties of Aramid Ⅲ Braided Rope[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(2):43-52. [17]李学楠, 雷震名, 刘志刚, 等. 纤维系缆力学性能试验研究[J]. 石油和化工设备, 2012, 15(9):16-18. LI Xuenan, LEI Zhenming, LIU Zhigang, et al. Experimental Study on Mechanical Properties of Fiber Tether[J]. Petro & Chemical Equipment, 2012, 15(9):16-18. [18]陈大勇, 张慧甍, 董小松, 等. 海底电缆抗拉性能数值分析[J]. 电线电缆, 2021(4):19-22. CHEN Dayong, ZHANG Huimeng, DONG Xiaosong, et al. Numerical Analysis of Tensile Properties of Submarine Cables[J]. Wire & Cable, 2021(4):19-22. [19]王文超, 张建民, 赵囿林, 等. 扁钢丝铠装光纤复合海缆拉伸试验与仿真分析[J]. 高电压技术, 2019, 45(11):3467-3473. WANG Wenchao, ZHANG Jianmin, ZHAO Youlin, et al. Tension Test and Simulation Analysis on Flat-steel-wire-armoured Optical Fiber Composite Submarine Cable[J]. High Voltage Engineering, 2019, 45(11):3467-3473. [20]CHANG H C, CHEN B F. Mechanical Behavior of Submarine Cable under Coupled Tension, Torsion and Compressive Loads[J]. Ocean Engineering, 2019, 189:106272. [21]DENG Yu, LIANG Xu, CAO Zeng, et al. The Analysis of Mechanical Properties and Lightweight Design of Nonmetallic Armored Umbilical Cable[J]. Journal of Pressure Vessel Technology, 2022, 144(5):051301. [22]LIM J, ZHENG J Q, MASTERS K, et al. Mechanical Behavior of A265 Single Fibers[J]. Journal of Materials Science, 2010, 45(3):652-661. [23]陈思颖, 黄晨光, 段祝平. 几种高性能纤维束的冲击动力学性能试验研究[J]. 爆炸与冲击, 2003, 23(4):355-359. CHEN Siying, HUANG Chenguang, DUAN Zhu-ping. Experimental Study on the Dynamic Properties of High Strength Fiber Clusters[J]. Explosion and Shock Waves, 2003, 23(4):355-359. [24]石景富, 于东, 徐铧东, 等. UHMWPE的应变率效应及其对超高速碰撞特性的影响[J]. 高压物理学报, 2023, 37(3):20-28. SHI Jingfu, YU Dong, XU Huadong, et al. Strain Rate Effect of UHMWPE and Its Influence on Hypervelocity Impact Performance[J]. Chinese Journal of High Pressure Physics, 2023, 37(3):20-28. [25]WANG Hongxu, WEERASINGHE D, MOHOTTI D, et al. On the Impact Response of UHMWPE Woven Fabrics:Experiments and Simulations[J]. International Journal of Mechanical Sciences, 2021, 204:106574. [26]王庭辉, 宋顺成, 王明超, 等. 高强度纤维束的动态拉伸性能[J]. 西南交通大学学报, 2008, 43(5):638-642. WANG Tinghui, SONG Shuncheng, WANG Mingchao, et al. Dynamic Tensile Properties of High Strength Fiber Bundles[J]. Journal of Southwest Jiaotong University, 2008, 43(5):638-642. [27]袁修秀. 海水腐蚀对缆索疲劳力学性能的影响研究[D]. 大连:大连理工大学, 2022. YUAN Xiuxiu. Study on the Effect of Seawater Corrosion on the Fatigue Mechanical Properties of Wire Rope[D].Dalian:Dalian University of Technology, 2022. [28]任路俊. 模拟深海环境下22MnCrNiMo钢与316不锈钢应力腐蚀行为研究[D]. 兰州:兰州理工大学, 2022. REN Lujun. Study on Stress Corrosion Behavior of 22MnCrNiMo Steel and 316 Stainless Steel in Simu-lated Deep-sea Environment[D]. Lanzhou:Lanzhou University of Technology, 2022. [29]郑有婧, 陈超峰, 陈敏剑, 等. 温度冲击对纤维拉伸性能的影响[J]. 塑料工业, 2021, 49(8):105-107. ZHENG Youjing, CHEN Chaofeng, CHEN Minjian, et al. Effect of Temperature Shock Test on Tensile Properties of Fiber[J]. China Plastics Industry, 2021, 49(8):105-107. [30]车辙, 李敏, 李庆辉, 等. PBO和芳纶纤维单丝拉伸性能影响因素分析[J]. 宇航材料工艺, 2018, 48(6):89-93. CHE Zhe, LI Min, LI Qinghui, et al. Analysis of Factors Affecting Tensile Properties of PBO and Aramid Fiber Monofilament[J]. Aerospace Materials & Technology, 2018, 48(6):89-93. [31]LIAN Yushun, LIU Haixiao, LI Linan, et al. An Experimental Investigation on the Bedding-in Behavior of Synthetic Fiber Ropes[J]. Ocean Engineering, 2018, 160:368-381. [32]王大刚. 钢丝的微动损伤行为及其微动疲劳寿命预测研究[D]. 徐州:中国矿业大学, 2012. WANG Dagang. Study on Fretting Damage Beha-viors and Fretting Fatigue Life Estimation of Steel Wires[D].Xuzhou:China University of Mining and Technology, 2012. [33]UEKI Y. High-speed Bending-fatigue Testing of Composite Materials[J]. IOP Conference Series:Materials Science and Engineering, 2018, 388:012008. [34]WATERHOUSE R B, SMALLWOOD R. Fretting Fatigue of Galvanised Steel Roping Wire[J]. Transactions of the IMF, 1993, 71(4):129-132. [35]肖晨光. 水下生产系统脐带缆疲劳试验机关键技术研究[D]. 哈尔滨:哈尔滨工程大学, 2019. XIAO Chenguang. The Key Technology Research on the Umbilical Fatigue Test System for the Subsea Production System[D].Harbin:Harbin Engineering University, 2019. [36]ZHANG Dekun, FENG Cunao, CHEN Kai, et al. Effect of Broken Wire on Bending Fatigue Characteristics of Wire Ropes[J]. International Journal of Fatigue, 2017, 103:456-465. [37]吴潘. 深海动态脐带缆疲劳分析方法研究[D]. 天津:天津大学, 2018. WU Pan. Investigation of Fatigue Analysis Method of Deep-sea Dynamic Umbilical[D].Tianjin:Tianjin University, 2018. [38]宁方刚, 于伟东. 化纤编织绳缆绕滑轮弯曲疲劳的热损伤研究[J]. 产业用纺织品, 2016, 34(9):32-36. NING Fanggang, YU Weidong. Study on Thermal Damage of Chemical Fiber Braided Ropes during Bending over Sheave[J]. Technical Textiles, 2016, 34(9):32-36. [39]李水娇, 李林安, 孙建军, 等. 深水系泊缆绳疲劳特性的试验研究[C]∥ 第十二届全国试验力学学术会议. 呼和浩特, 2009:106-107. LI Shuijiao, LI Linan, SUN Jianjun, et al.Experimental Study on Fatigue Characteristics of Deep-water Mooring Cables[C]∥ The 12th National Conference on Experimental Mechanics. Hohhot, 2009:106-107. [40]黄镇. 提升钢丝绳磨损特性研究[D]. 太原:太原理工大学, 2016. HUANG Zhen. The Wear Characteristics of Hoisting Rope[D].Taiyuan:Taiyuan University of Technology, 2016. [41]王旭颉. 海洋动态缆疲劳失效机理及寿命预测研究[D]. 大连:大连理工大学, 2021. WANG Xujie. Study on Fatigue Failure Mechanism and Life Prediction of Subsea Dynamic Cable[D]. Dalian:Dalian University of Technology, 2021. [42]ZHANG Jun, WANG Dagang, SONG Daozhu, et al. Tribo-fatigue Behaviors of Steel Wire Rope under Bending Fatigue with the Variable Tension[J]. Wear, 2019, 428/429:154-161. [43]焦亚男, 杨志, 张世浩. 试验参数对高性能石英纤维摩擦性能的影响[J]. 纺织学报, 2019, 40(7):38-43. JIAO Yanan, YANG Zhi, ZHANG Shihao. Influence of Experimental Parameters on Friction Properties of High Performance Quartz Fibers[J]. Journal of Textile Research, 2019, 40(7):38-43. [44]LIU Hongtao, JI Hongmin, WANG Xuemei. Tribological Properties of Ultra-high Molecular Weight Polyethylene at Ultra-low Temperature[J]. Cryogenics, 2013, 58:1-4. [45]赵兴宁. 缠绕过渡过程钢丝绳摩擦磨损特性研究[D]. 徐州:中国矿业大学, 2019. ZHAO Xingning. Study on Friction and Wear Characteristics of Wire Rope during Winding Transition[D].Xuzhou:China University of Mining and Technology, 2019. [46]彭玉兴, 王高芳, 朱真才, 等. 低温环境下矿井提升钢丝绳摩擦磨损特性研究[J]. 摩擦学学报, 2022, 42(3):552-561. PENG Yuxing, WANG Gaofang, ZHU Zhencai, et al. Friction and Wear Characteristics of Mine Hoist Wire Rope at Low Temperature[J]. Tribology, 2022, 42(3):552-561. [47]PENG Yuxing, CHANG Xiangdong, ZHU Zhencai, et al. Sliding Friction and Wear Behavior of Winding Hoisting Rope in Ultra-deep Coal Mine under Different Conditions[J]. Wear, 2016, 368/369:423-434. [48]ZHANG Dekun, SHEN Yan, XU Linmin, et al. Fretting Wear Behaviors of Steel Wires in Coal Mine under Different Corrosive Mediums[J]. Wear, 2011, 271(5/6):866-874. [49]TANG Liping, HE Wei, ZHU Xiaohua. Parameter Sensitivity Analysis on the Buckling Failure Modes of Tensile Armor Layers of Flexible Pipe[J]. Engineering Failure Analysis, 2019, 104:784-795. [50]施兴华, 曹奔, 钱佶麒, 等. ROV脐带缆水动力分析[J]. 舰船科学技术, 2022, 44(18):86-93. SHI Xinghua, CAO Ben, QIAN Jiqi, et al. Hydrodynamic Analysis of ROV Umbilical Cable[J]. Ship Science and Technology, 2022, 44(18):86-93. [51]金永平, 万步炎, 刘德顺, 等. 深海海底钻机收放系统动力学随机数值仿真方法研究[J]. 机械工程学报, 2018, 54(23):112-120. JIN Yongping, WAN Buyan, LIU Deshun, et al. A Random Numerical Simulation Method for Launch and Recovery System of Seafloor Drill[J]. Journal of Mechanical Engineering, 2018, 54(23):112-120. [52]QUAN Weicai, ZHANG Zhuying, ZHANG Aiqun. Dynamics Analysis of Planar Armored Cable Motion in Deep-sea ROV System[J]. Journal of Central South University, 2014, 21(12):4456-4467. [53]谢焜, 金永平, 李兰香, 等. 深海海底钻机用铠装脐带缆有限元分析[J]. 矿业工程研究, 2020, 35(3):34-40. XIE Kun, JIN Yongping, LI Lanxiang, et al. Finite Element Analysis of Armored Umbilical Cable for Seafloor Drill[J]. Mineral Engineering Research, 2020, 35(3):34-40. [54]XIE Kun, JIN Yongping, PENG Youduo, et al. Research on High Quality Mesh Method of Armored Umbilical Cable for Deep Sea Equipment[J]. Ocean Engineering, 2021, 221:108550. [55]邓禹, 夏辉, 高建东, 等. 脐带缆轻量化设计及其力学性能[J]. 船舶工程, 2022, 44(3):150-157. DENG Yu, XIA Hui, GAO Jiandong, et al. Lightweight and Mechanical Properties of Umbilical Cable[J]. Ship Engineering, 2022, 44(3):150-157. [56]刘峰, 刘予, 宋成兵, 等. 中国深海大洋事业跨越发展的三十年[J]. 中国有色金属学报, 2021, 31(10):2613-2623. LIU Feng, LIU Yu, SONG Chengbing, et al. Three Decades Development of China in Deep-sea Field[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10):2613-2623. [57]阎军, 胡海涛, 苏琦, 等. 海洋电缆中关键力学问题的研究进展与展望[J]. 力学学报, 2022, 54(4):846-861. YAN Jun, HU Haitao, SU Qi, et al. Prospect and Progression of Key Mechanical Problems in Marine Cables[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4):846-861. [58]叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析[J]. 复合材料学报, 2022, 39(9):4286-4309. YE Zhuoran, LUO Liang, PAN Haiyan, et al. Research Status and Analysis of Ultra-high Mole-cular Weight Polyethylene Fiber and Its Composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9):4286-4309. [59]高红成, 张伟, 张薇, 等. 编织复合材料防护部件抗爆炸冲击性能研究[J]. 兵器材料科学与工程, 2015, 38(1):1-5. GAO Hongcheng, ZHANG Wei, ZHANG Wei, et al. Explosion Impact Resistance of Braided Composite as Protection Component[J]. Ordnance Material Science and Engineering, 2015, 38(1):1-5. [60]LUBIS M B, KIMIAEI M. Wave Flume and Numerical Test on Launch and Recovery of Ultra-deep-water ROV through Splash Zone under Wave and Ship Motion[J]. Ocean Engineering, 2021, 238:109767. [61]WU Defa, GUAN Ziwei, CHENG Qian, et al. Development of a Friction Test Apparatus for Simu-lating the Ultra-high Pressure Environment of the Deep Ocean[J]. Wear, 2020, 452/453:203294. |
[1] | 张武昆1, 2, 赵剑2, 谭永华1, 2, 高玉闪1, 2, 王珺1, 2, 韩子月3, 耿小亮4. 不同增强方向的带支柱体心立方点阵及其填充结构的压缩力学性能分析[J]. 中国机械工程, 2024, 35(09): 1642-1652. |
[2] | 倪敬, 崔智, 何利华, 付新, 朱泽飞. 聚四氟乙烯材料切削工艺和应用研究进展[J]. 中国机械工程, 2024, 35(03): 498-514. |
[3] | 王伟, 马乾伦, 白振华, 王子昂. 基于梯度提升决策树的冷轧高强钢卷力学性能预测[J]. 中国机械工程, 2023, 34(18): 2222-2229. |
[4] | 刘莹, 陈越, 赵雪利, 于同敏, 祝铁丽, . 超声辅助注射成形碳纤维增强聚丙烯制件性能研究[J]. 中国机械工程, 2023, 34(16): 1975-1981. |
[5] | 李光俊, 段宏, 徐磊, 阚琛, 刘忠亮, 高晓东. Al7.8Co20.6Cr12.2Fe11.5Ni40.7Ti7.2高熵超合金的摩擦磨损行为研究[J]. 中国机械工程, 2023, 34(13): 1568-1575. |
[6] | 周后明, 陈皓月, 李神贵. 基于梯度结构的Al2O3/ZrO2陶瓷刀具材料的制备及其力学性能[J]. 中国机械工程, 2023, 34(10): 1199-1207. |
[7] | 高恺, 李坤, 顾红历, . 镀锌量对低合金钢/5052铝合金感应静压焊接头微观组织与力学性能的影响[J]. 中国机械工程, 2023, 34(10): 1220-1229. |
[8] | 杨硕, 张杰, 孔宁, 王浩威, 王晓宇, 庄原. 航天用大展收比豆荚结构变形规律模型及其仿真验证[J]. 中国机械工程, 2023, 34(07): 780-788. |
[9] | 张岩, 黄传真, 刘含莲. 氮化碳基陶瓷刀具材料的制备与力学性能研究[J]. 中国机械工程, 2023, 34(03): 352-358,368. |
[10] | 方学伟, 蒋笑, 王喆, 武晓康, 黄科. ER120S-G高强钢电弧增材制造的工艺优化[J]. 中国机械工程, 2023, 34(02): 218-225. |
[11] | 蒋创宇, 张保强, 陈云, 王存福, 罗华耿, 胡杰翔, 曹龙超. Gyroid结构力学性能及数值收敛性研究[J]. 中国机械工程, 2022, 33(23): 2790-28000. |
[12] | 焦晨, 晁龙, 朱磊, 沈理达, 梁绘昕, 戴宁, 王长江, 孙骏. 面向骨科植入物的仿生多孔结构设计与制造方法[J]. 中国机械工程, 2022, 33(23): 2844-2850. |
[13] | 汤永锋, 路平, 刘斌, 江开勇, 颜丙功, 刘嘉伟, 韩伟, . 不同梯度变化方式的不规则多孔结构设计与力学性能分析[J]. 中国机械工程, 2022, 33(23): 2859-2866. |
[14] | 张帅, 陈照强, 肖光春, 衣明东, 张静婕, 周婷婷, 许崇海. Si3N4/TiC/ZrSi2陶瓷刀具裂纹愈合性能研究[J]. 中国机械工程, 2022, 33(19): 2288-2297. |
[15] | 曾寿金, , 李传生, 刘广, 许明三, 李涤尘. 选区激光熔化梯度多孔支架力学性能和能量吸收研究[J]. 中国机械工程, 2022, 33(19): 2364-2371. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 293
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||