China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (9): 2032-2038.DOI: 10.3969/j.issn.1004-132X.2025.09.015
Jian CHEN1,2(), Minghui YAN1,2, Pin CHEN1,2
Received:
2024-05-08
Online:
2025-09-25
Published:
2025-10-15
Contact:
Jian CHEN
通讯作者:
陈剑
作者简介:
陈剑*(通信作者),男,1962年生,教授、博士研究生导师。研究方向为噪声振动控制,机械故障诊断与状态监测。E-mail:hfgd8216@126.com。
CLC Number:
Jian CHEN, Minghui YAN, Pin CHEN. Acoustic Signal Fault Diagnosis Method of Centrifugal Pumps Based on Bayesian Optimization Multiscale DenseNet[J]. China Mechanical Engineering, 2025, 36(9): 2032-2038.
陈剑, 严明辉, 陈品. 基于贝叶斯优化多尺度DenseNet的离心泵声信号故障诊断方法[J]. 中国机械工程, 2025, 36(9): 2032-2038.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.09.015
网络层名称 | 参数 | 输出尺寸 |
---|---|---|
卷积层 | 3×3,步长1 | 64×64×64 |
池化层 | 3×3,步长3 | 32×32×64 |
Dense块1 | 密集连接层×3 | 32×32×256 |
过渡层1 | 过渡层×1 | 16×16×128 |
Dense块2 | 密集连接层×3 | 16×16×320 |
过渡层2 | 过渡层×1 | 8×8×128 |
Dense块3 | 密集连接层×3 | 8×8×320 |
过渡层3 | 过渡层×1 | 8×8×128 |
Dense块4 | 密集连接层×2 | 4×4×256 |
全局池化 | 平均池化 | 1×1×256 |
dropout | 50%丢弃 | 1×1×256 |
全连接层 | 4 |
Tab.1 Multiscale DenseNet network parameters
网络层名称 | 参数 | 输出尺寸 |
---|---|---|
卷积层 | 3×3,步长1 | 64×64×64 |
池化层 | 3×3,步长3 | 32×32×64 |
Dense块1 | 密集连接层×3 | 32×32×256 |
过渡层1 | 过渡层×1 | 16×16×128 |
Dense块2 | 密集连接层×3 | 16×16×320 |
过渡层2 | 过渡层×1 | 8×8×128 |
Dense块3 | 密集连接层×3 | 8×8×320 |
过渡层3 | 过渡层×1 | 8×8×128 |
Dense块4 | 密集连接层×2 | 4×4×256 |
全局池化 | 平均池化 | 1×1×256 |
dropout | 50%丢弃 | 1×1×256 |
全连接层 | 4 |
故障类型 | 标签 | 训练集 | 验证集 | 测试集 |
---|---|---|---|---|
正常 | 状态1 | 350 | 150 | 100 |
气蚀 | 状态2 | 350 | 150 | 100 |
轴不对中 | 状态3 | 350 | 150 | 100 |
螺栓松动 | 状态4 | 350 | 150 | 100 |
Tab.2 Centrifugal pump fault labels and samples
故障类型 | 标签 | 训练集 | 验证集 | 测试集 |
---|---|---|---|---|
正常 | 状态1 | 350 | 150 | 100 |
气蚀 | 状态2 | 350 | 150 | 100 |
轴不对中 | 状态3 | 350 | 150 | 100 |
螺栓松动 | 状态4 | 350 | 150 | 100 |
参数 | 初始学习率 | 动量 | L2正则化系数 |
---|---|---|---|
取值区间 | [0.0001,0.1] | [0.7,0.98] | [1×10-10,1×10-2] |
Tab.3 Hyperparameter value
参数 | 初始学习率 | 动量 | L2正则化系数 |
---|---|---|---|
取值区间 | [0.0001,0.1] | [0.7,0.98] | [1×10-10,1×10-2] |
神经网络 | 验证集准确率/% | 测试集准确率/% |
---|---|---|
CNN | 68.10 | 68.25 |
DenseNet | 83.54 | 80.5 |
多尺度DenseNet | 91.72 | 91.25 |
本文方法 | 99.5 | 99 |
Tab.4 Accuracies of each model verification set and test set
神经网络 | 验证集准确率/% | 测试集准确率/% |
---|---|---|
CNN | 68.10 | 68.25 |
DenseNet | 83.54 | 80.5 |
多尺度DenseNet | 91.72 | 91.25 |
本文方法 | 99.5 | 99 |
[1] | 柯耀, 王琪, 苗育茁, 等. 基于PARAFAC分析和SVM离心泵故障诊断方法[J]. 噪声与振动控制, 2022, 42(1):106-111. |
KE Yao, WANG Qi, MIAO Yuzhuo, et al. Fault Diagnosis Method for Centrifugal Pumps Based on PARAFAC Analysis and SVM[J]. Noise and Vibration Control, 2022, 42(1):106-111. | |
[2] | 范传翰, 宋礼威, 刘厚林, 等. 基于PSO-SVM-RF的离心泵转子故障诊断研究[J]. 中国农村水利水电, 2023(2):171-176. |
FAN Chuanhan, SONG Liwei, LIU Houlin, et al. Research on the Rotor Fault Diagnosis of the Centrifugal Pump Based on PSO-SVM-RF[J]. China Rural Water and Hydropower, 2023(2):171-176. | |
[3] | 梁兴, 罗远兴, 邓飞, 等. 多传感器数据下基于MFDFA-BP的离心泵空化致振故障分析[J]. 振动与冲击, 2022, 41(17):238-243. |
LIANG Xing, LUO Yuanxing, DENG Fei, et al. Cavitation Induced Vibration Fault Analysis of Centrifugal Pump Based on MFDFA-BP under Multi-sensor Data[J]. Journal of Vibration and Shock, 2022, 41(17):238-243. | |
[4] | LI Shi, WANG Huaqing, SONG Liuyang, et al. An Adaptive Data Fusion Strategy for Fault Diagnosis Based on the Convolutional Neural Network[J]. Measurement, 2020, 165:108122. |
[5] | HASAN M J, RAI A, AHMAD Z, et al. A Fault Diagnosis Framework for Centrifugal Pumps by Scalogram-based Imaging and Deep Learning[J]. IEEE Access, 2021, 9:58052-58066. |
[6] | 周玉蓉, 张巧灵, 于广增, 等. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7):51-63. |
ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, et al. Review of Acoustic Signal-based Industrial Equipment Fault Diagnosis[J]. Computer Engineering and Applications, 2023, 59(7):51-63. | |
[7] | 汪欣, 毛东兴, 李晓东. 基于声信号和一维卷积神经网络的电机故障诊断研究[J]. 噪声与振动控制, 2021, 41(2):125-129. |
WANG Xin, MAO Dongxing, LI Xiaodong. Motor Fault Diagnosis Using Microphones and One-dimensional Convolutional Neural Network[J]. Noise and Vibration Control, 2021, 41(2):125-129. | |
[8] | 李少波, 姚勇, 桂桂, 等. 基于CNN与多通道声学信号的齿轮故障诊断[J]. 中国测试, 2019, 45(10):1-5. |
LI Shaobo, YAO Yong, GUI Gui, et al. Gear Fault Diagnosis Based on CNN and Multi-channel Acoustic Signals[J]. China Measurement & Test, 2019, 45(10):1-5. | |
[9] | LI Congyue, HU Yihuai, JIANG Jiawei, et al. Fault Diagnosis of a Marine Power-generation Diesel Engine Based on the Gramian Angular Field and a Convolutional Neural Network[J]. Journal of Zhejiang University:Science A, 2024, 25(6):470-482. |
[10] | ZHANG Ke, GUO Yurong, WANG Xinsheng, et al. Multiple Feature Reweight DenseNet for Image Classification[J]. IEEE Access, 2019, 7:9872-9880. |
[11] | WANG Shengwei, WANG Hongkui, XIANG Sen, et al. Densely Connected Convolutional Network Block Based Autoencoder for Panorama Map Compression[J]. Signal Processing:Image Communication, 2020, 80:115678. |
[12] | 葛战, 李兵, 孙磊, 等. 基于星座图和密集连接网络的QAM信号识别[J]. 电子信息对抗技术, 2023, 38(1):43-48. |
GE Zhan, LI Bing, SUN Lei, et al. Modulation Classification Based on Constellation Diagrams and DenseNet for QAM Signals[J]. Electronic Information Warfare Technology, 2023, 38(1):43-48. | |
[13] | 朱汇龙, 刘晓燕, 刘瑶. 基于贝叶斯新型深度学习超参数优化的研究[J]. 数据通信, 2019(2):35-38. |
ZHU Huilong, LIU Xiaoyan, LIU Yao. Research on Hyper-parameter Optimization Based on Bayesian Deep Learning[J]. Data Communication,2019(2):35-38. | |
[14] | 贾寒冰, 刘鹏, 张雷, 等. 基于规则与机器学习融合的换道决策建模方法研究[J]. 机械工程学报, 2022, 58(4):212-221. |
JIA Hanbing, LIU Peng, ZHANG Lei, et al. Lane-changing Decision Model Development by Combining Rules Abstract and Machine Learning Technique[J]. Journal of Mechanical Engineering, 2022, 58(4):212-221. | |
[15] | PENG Kang, JIANG Lizhong, ZHOU Wangbao, et al. A Seismic Response Prediction Method Based on a Self-optimized Bayesian Bi-LSTM Mixed Network for High-speed Railway Track-bridge System[J]. Journal of Central South University, 2024, 31(3):965-975. |
[1] |
LUO Ji-Sai, XU De-Ge, SHI Mei-Li.
Gearbox Fault Diagnosis with Rotating Speed Fluctuation Based on SVD and Chirplet Path Pursuit Algorithm
[J]. J4, 201016, 21(16): 1947-1951.
|
[2] | Siqian FENG, Jiaxu WANG, Xin ZHANG, Xinyue HUANG. Rolling Bearing Fault Diagnosis Using a New Resonance Demodulation Method [J]. China Mechanical Engineering, 2025, 36(9): 2022-2031. |
[3] | JIANG Donglei1, ZHAO Qiangqiang1, WU Tengfei1, MA Jia2, JIA Kang1, HONG Jun1. Research on Precision Control of Large Deployable Antennas Driven by Fusion of Data and Model [J]. China Mechanical Engineering, 2025, 36(05): 898-910. |
[4] | YANG Kang1, CHEN Xuejun1, 2, ZHANG Lei3, LIU Feng3. Cross-domain Fault Diagnosis of Bearings Based on Joint Subdomain Contrast Alignment [J]. China Mechanical Engineering, 2025, 36(05): 1065-1073. |
[5] | JIAO Huachao, SUN Wenlei, WANG Hongwei. Bearing Fault Data Generation Method Based on WLT-ACGAN [J]. China Mechanical Engineering, 2025, 36(03): 546-557. |
[6] | LI Jimeng, WANG Ze, SHI Qingxin, MENG Zong. Rolling Bearing Fault Diagnosis of Wind Turbines Based on Frequency Domain Group Sparse Model with Graph Regularization Constraints [J]. China Mechanical Engineering, 2024, 35(11): 1909-1919. |
[7] | GUO Haiyu1, ZOU Shenggong1, ZHANG Xiaoguang2, 3, 4, LU Fanfan2CHEN Yang2, WANG Han2, XU Xinzhi2. Fault Diagnosis of Rotating Machinery Bearings Based on Multi-source Wavelet Transform Neural Network [J]. China Mechanical Engineering, 2024, 35(11): 2026-2034. |
[8] | LI Can1, 2, WANG Guangbin2, 1, ZHAO Shubiao1, 2, ZHONG Zhixian1, ZHANG Hui1, 2. Bearing Fault Diagnosis Method Based on Intensive Distribution Alignment with Open Set Difference [J]. China Mechanical Engineering, 2024, 35(09): 1622-1633. |
[9] | ZOU Xiaoyu1, 3, SUN Guoqing1, WANG Zhongbin1, 3, PAN Jie2, LIU Xinhua1, 3, LI Xin1, 3. Bearing Fault Diagnosis of Mining Drilling Rig with Time-frequency-fused Deep Network [J]. China Mechanical Engineering, 2024, 35(08): 1405-1413,1448. |
[10] | XIAO Gang, GU Hairui, DONG Jinjin, WANG Qibing, LU Jiawei. Simulation Data-driven Migration Diagnosis Method for Guide Rail Faults in Long-term Service Elevators [J]. China Mechanical Engineering, 2024, 35(01): 125-135. |
[11] | YU Shubo, LIU Zhansheng, ZHAO Chen. Dynamics Simulation Data Driven Domain Adaptive Intelligent Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(23): 2832-2841. |
[12] | CHEN Jian, XU Chang, XU Tingliang, . Centrifugal Pump Fault Diagnosis Methods Based on Dislocation Superposition Methods and Improved Probabilistic Neural Networks [J]. China Mechanical Engineering, 2023, 34(23): 2854-2861. |
[13] | QIN Guohao, ZHANG Kai, DING Kun, HUANG Fengfei, ZHENG Qing, DING Guofu, . Dynamic Wide Convolutional Residual Network for Bearing Fault Diagnosis Method [J]. China Mechanical Engineering, 2023, 34(18): 2212-2221. |
[14] | DONG Shaojiang, ZHOU Cunfang, CHEN Lili, XU Xiangyang. Cross-domain Fault Diagnosis of Bearings Based on Discriminant Feature Extraction and Dual-domain Alignment [J]. China Mechanical Engineering, 2023, 34(15): 1856-1863. |
[15] | MENG Kang, TENG Wei, PENG Dikang, XIANG Ling, LIU Yibing. Operating Mechanism and Data Driven Approach for Fault Alarm of Wind Turbine Gearbox Systems [J]. China Mechanical Engineering, 2023, 34(12): 1476-1485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||