China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (9): 2022-2031.DOI: 10.3969/j.issn.1004-132X.2025.09.014
Siqian FENG1(), Jiaxu WANG1,2, Xin ZHANG1,3(
), Xinyue HUANG1
Received:
2024-05-17
Online:
2025-09-25
Published:
2025-10-15
Contact:
Xin ZHANG
通讯作者:
张新
作者简介:
冯思茜,女,2000年生,硕士研究生。研究方向为故障诊断。E-mail:siqianfeng_lu@163.com基金资助:
CLC Number:
Siqian FENG, Jiaxu WANG, Xin ZHANG, Xinyue HUANG. Rolling Bearing Fault Diagnosis Using a New Resonance Demodulation Method[J]. China Mechanical Engineering, 2025, 36(9): 2022-2031.
冯思茜, 王家序, 张新, 黄欣玥. 基于共振解调新方法的滚动轴承故障诊断[J]. 中国机械工程, 2025, 36(9): 2022-2031.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.09.014
l | ||||
---|---|---|---|---|
3.2 | 200 | 0.005 | 0.13 | |
3.6 | 240 | 0.02 | 0.26 | |
3.0 | 260 | 0.02 | 0.63 |
Tab.1 The specific parameters of b2(t)
l | ||||
---|---|---|---|---|
3.2 | 200 | 0.005 | 0.13 | |
3.6 | 240 | 0.02 | 0.26 | |
3.0 | 260 | 0.02 | 0.63 |
[1] | 秦国浩, 张楷, 丁昆, 等. 动态宽卷积残差网络的轴承故障诊断方法[J]. 中国机械工程, 2023, 34(18):2212-2221. |
QIN Guohao, ZAHNG Kai, DING Kun, et al. Dynamic Wide Convolutional Residual Network for Bearing Fault Diagnosis Method[J]. China Mechanical Engineering, 2023, 34(18):2212-2221. | |
[2] | 张龙, 胡燕青, 赵丽娟, 等. 多通道信息融合与深度迁移学习的旋转机械故障诊断[J]. 中国机械工程, 2023, 34(8):966-975. |
ZHANG Long, HU Yanqing, ZHAO Lijuan, et al. Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis[J]. China Mechanical Engineering, 2023, 34(8):966-975. | |
[3] | ZHAO Y K, ZHANG X, WANG J X, et al. A New Data Fusion Driven-sparse Representation Learning Method for Bearing Intelligent Diagnosis in Small and Unbalanced Samples[J]. Engineering Applications of Artificial Intelligence, 2023, 117:105513. |
[4] | 陈剑, 许畅, 徐庭亮. 基于位错叠加法和改进概率神经网络的离心泵故障诊断方法[J]. 中国机械工程, 2023, 34(23):2854-2861. |
CHEN Jian, XU Chang, XU Tingliang. Centrifugal Pump Fault Diagnosis Methods Based on Dislocation Superposition Methods and Improved Probabilistic Neural Networks[J]. China Mechanical Engineering, 2023, 34(23):2854-2861. | |
[5] | 赵艺珂, 张新, 王家序, 等. 基于增强最小熵解卷积的航空发动机故障诊断[J]. 中国机械工程, 2023, 34(2):193-200. |
ZHAO Yike, ZAHNG Xin, WANG Jiaxu, et al. Aero-engine Fault Diagnosis Based on an Enhanced Minimum Entropy Deconvolution[J]. China Mechanical Engineering, 2023, 34(2):193-200. | |
[6] | SUN J K, ZHANG X, WANG J X. Lightweight Bidirectional Long Short-term Memory Based on Automated Model Pruning with Application to Bearing Remaining Useful Life Prediction[J]. Engineering Applications of Artificial Intelligence, 2023, 118:105662. |
[7] | ZHANG X, ZHANG Z Q, WANG J X, et al. Reweighted-Kurtogram with Sub-bands Rearranged and Ensemble Dual-tree Complex Wavelet Packet Transform for Bearing Fault Diagnosis [J]. Structural Health Monitoring, 2022, 21 (6):2951-2967. |
[8] | HARTING D R. Demodulated Resonance AnalysisLa Powerful Incipient Failure Detection Technique[J]. ISA Transactions, 1978, 17(1):35-40. |
[9] | DWYER R. Detection of Non-gaussian Signals by Frequency Domain Kurtosis Estimation[C]∥IEEE International Conference on Acoustics and Signal Processing. Boston, 1983, 8:607-610. |
[10] | ANTONI J, RANDALL R B. The Spectral Kurtosis Application to the Vibratory Surveillance and Diagnostics of Rotating Machines[J]. Mechanical Systems and Signal Processing, 2006, 20(2):308-331. |
[11] | ANTONI J. Fast Computation of the Kurtogram for the Detection of Transient Faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1):108-124. |
[12] | LEI Y, LIN J, HE Z, et al. Application of an Improved Kurtogram Method for Fault Diagnosis of Rolling Element Bearings[J]. Mechanical Systems and Signal Processing, 2011, 25(5):1738-1749. |
[13] | CHEN J, ZI Y, HE Z, et al. Improved Spectral Kurtosis with Adaptive Redundant Multiwavelet Packet and Its Applications for Rotating Machinery Fault Detection[J]. Measurement Science and Technology, 2012, 23(4):045608. |
[14] | CHEN B Q, ZHANG Z S, ZI Y Y, et al. Detecting of Transient Vibration Signatures Using an Improved Fast Spatial-spectral Ensemble Kurtosis Kurtogram and Its Applications to Mechanical Signature Analysis of Short Duration Data from Rotating Machinery[J]. Mechanical Systems and Signal Processing, 2013, 40(1):1-37. |
[15] | MOSHREFZADEH A, FASANA A. The AutogramLan Effective Approach for Selecting the Optimal Demodulation Band in Rolling Element Bearings Diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 105:294-318. |
[16] | WANG D, PETER W T, TSUI K L. An Enhanced Kurtogram Method for Fault Diagnosis of Rolling Element Bearings[J]. Mechanical Systems and Signal Processing, 2013, 35(1/2):176-199. |
[17] | ANTONI J. The Spectral KurtosisLa Useful Tool for Characterising Non-stationary Signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2):282-307. |
[18] | KINGSBURY N. Shift Invariant Properties of the Dual-tree Complex Wavelet Transform[C]∥IEEE International Conference on Acoustics and Signal Processing.Phoenix, 1999, 3:1221-1224. |
[19] | WANG L, LIU Z, CAO H, et al. Subband Averaging Kurtogram with Dual-tree Complex Wavelet Packet Transform for Rotating Machinery Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2020, 142:106755. |
[1] | JIAO Huachao, SUN Wenlei, WANG Hongwei. Bearing Fault Data Generation Method Based on WLT-ACGAN [J]. China Mechanical Engineering, 2025, 36(03): 546-557. |
[2] | GUO Haiyu1, ZOU Shenggong1, ZHANG Xiaoguang2, 3, 4, LU Fanfan2CHEN Yang2, WANG Han2, XU Xinzhi2. Fault Diagnosis of Rotating Machinery Bearings Based on Multi-source Wavelet Transform Neural Network [J]. China Mechanical Engineering, 2024, 35(11): 2026-2034. |
[3] | LI Can1, 2, WANG Guangbin2, 1, ZHAO Shubiao1, 2, ZHONG Zhixian1, ZHANG Hui1, 2. Bearing Fault Diagnosis Method Based on Intensive Distribution Alignment with Open Set Difference [J]. China Mechanical Engineering, 2024, 35(09): 1622-1633. |
[4] | ZHAO Jing, YANG Shaopu, LI Qiang, LIU Yongqiang, . A New Transfer Learning Method with Residual Attention and Its Applications on Rolling Bearing Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(03): 332-343. |
[5] | WEN Jiangtao, ZHANG Pengcheng, SUN Jiedi, LEI Ming. Unsupervised Transfer Learning with Residual Convolutional Autoencoder Networks for Bearing Fault Diagnosis [J]. China Mechanical Engineering, 2022, 33(14): 1707-1716. |
[6] | HE Qiang, TANG Xianghong, LI Chuanjiang, LU Jianguang, CHEN Jiadui. Bearing Fault Diagnosis Method Based on Small Sample Data under Unbalanced Loads#br# [J]. China Mechanical Engineering, 2021, 32(10): 1164-1171,1180. |
[7] | WANG Ke1,2;LYU Yong1,2;YI Cancan1,2. Fault Diagnosis Method of Resonance Demodulation under Compressive Sensing Frameworks [J]. China Mechanical Engineering, 2018, 29(16): 1907-1911. |
[8] | Zhang Shuqing1;Li Wei1;Zhang Liguo1,2;Hu Yongtao1;Qian Lei1;Jiang Wanlu1. Bearing Fault Diagnosis Based on multi-EMD, cApEn and GG Clustering Algorithm [J]. China Mechanical Engineering, 2016, 27(24): 3362-3367. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||