China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2978-2985.DOI: 10.3969/j.issn.1004-132X.2025.12.021

Previous Articles    

A Multi-fault Diagnosis Method for Rolling Bearings Integrating Two-dimensional Convolutional and GRU

Xiong ZHANG1,2(), Lecong DONG2, Wenqiang WANG2, Weiying QU2, Shuting WAN1,2()   

  1. 1.Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention,Baoding,Hebei,071003
    2.Department of Mechanical Engineering,North China Electric Power University,Baoding,Hebei,071003
  • Received:2024-11-22 Online:2025-12-25 Published:2025-12-31
  • Contact: Shuting WAN

融合二维卷积与门控循环神经网络的滚动轴承多故障诊断方法

张雄1,2(), 董乐聪2, 王文强2, 渠伟瀅2, 万书亭1,2()   

  1. 1.河北省电力机械装备健康维护与失效预防重点实验室, 保定, 071003
    2.华北电力大学机械工程系, 保定, 071003
  • 通讯作者: 万书亭
  • 作者简介:张雄,男,1990年生,副教授,博士。研究方向为机械设备状态监测与故障诊断。E-mail:hdjxzx@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金(52105098);河北省自然科学基金(E2024502052);河北省自然科学基金(E2021502038);中央高校基本科研业务费专项资金(2025MS137);中央高校基本科研业务费专项资金(2023MS130)

Abstract:

Aiming at the problems of difficulty in diagnosing and classifying single or compound faults of rolling bearings under complex working conditions,a bearing fault diagnosis method was proposed by fusing two-dimensional convolutional neural network(2D-CNN)and GRU.Firstly,the 2D-CNN layer and GRU layer were used to extract the spatial and temporal features,and the batch normalization(BN) layer was introduced to prevent overfitting.Secondly,the spatial and temporal information features extracted by weight fusion were synthesized,and then the global average pooling layer was used instead of the flatten layer.Finally,the covariance matrix and t-SNE algorithm were used to visualize and analyze the model training processes and output the results by activation function Softmax classification.The model was verified by prognostics and health management(PHM) dataset and XJTU-SY dataset,and compared with other models,the good accuracy and generalization of the model were shown.

Key words: rolling bearing, convolutional neural network, gated recurrent neural network(GRU), fault diagnosis and classification, visual analytics

摘要:

针对滚动轴承在复杂工况下的单一或复合故障诊断与分类困难的问题,提出了一种二维卷积神经网络(2D-CNN)与门控循环神经网络(GRU)融合的轴承故障诊断方法。首先采用2D-CNN层和GRU层提取空间特征与时序特征,并引入批量标准化(BN)层防止过拟合,然后通过权重融合综合二者提取的空间与时序信息特征,再使用全局平均池化层代替展平层,最后用协方差矩阵和t-SNE算法对模型训练过程进行可视化分析并通过激活函数Softmax分类输出结果。通过故障预测与健康管理(PHM)数据集和XJTU-SY数据集对模型进行验证,并和其他模型作对比,结果显示了所提模型良好的准确率和泛化性。

关键词: 滚动轴承, 卷积神经网络, 门控循环神经网络, 故障诊断与分类, 可视化分析法

CLC Number: