China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2978-2985.DOI: 10.3969/j.issn.1004-132X.2025.12.021
Xiong ZHANG1,2(
), Lecong DONG2, Wenqiang WANG2, Weiying QU2, Shuting WAN1,2(
)
Received:2024-11-22
Online:2025-12-25
Published:2025-12-31
Contact:
Shuting WAN
张雄1,2(
), 董乐聪2, 王文强2, 渠伟瀅2, 万书亭1,2(
)
通讯作者:
万书亭
作者简介:张雄,男,1990年生,副教授,博士。研究方向为机械设备状态监测与故障诊断。E-mail:hdjxzx@ncepu.edu.cn。
基金资助:CLC Number:
Xiong ZHANG, Lecong DONG, Wenqiang WANG, Weiying QU, Shuting WAN. A Multi-fault Diagnosis Method for Rolling Bearings Integrating Two-dimensional Convolutional and GRU[J]. China Mechanical Engineering, 2025, 36(12): 2978-2985.
张雄, 董乐聪, 王文强, 渠伟瀅, 万书亭. 融合二维卷积与门控循环神经网络的滚动轴承多故障诊断方法[J]. 中国机械工程, 2025, 36(12): 2978-2985.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.12.021
| 模型结构 | 输出尺寸 | 参数 设置 | 参数 数量 |
|---|---|---|---|
| Input | 32×32×1 | ||
| Conv2d_1 | 32×32×16 | 3×3×16 | 144 |
| GRU_1 | 32×32×16 | 16 | 912 |
| BN_1 | 32×32×16 | 64 | |
| Dropout_1 | 32×32×16 | 0.2 | |
| conv2d_1 | 32×32×32 | 3×3×32 | 4608 |
| GRU_2 | 32×32×32 | 32 | 4800 |
| BN_2 | 32×32×32 | 128 | |
| Dropout_2 | 32×32×32 | 0.2 | |
| Conv2d_2 | 32×32×64 | 3×3×64 | 18 432 |
| GRU_3 | 32×32×64 | 64 | 18 816 |
| BN_3 | 32×32×64 | 256 | |
| Dropout_3 | 32×32×64 | 0.2 | |
| Global Average Pooling | 64 | ||
| Softmax | 10 | 10×1 | 650 |
Tab.1 MFCNN-GRU model parameters
| 模型结构 | 输出尺寸 | 参数 设置 | 参数 数量 |
|---|---|---|---|
| Input | 32×32×1 | ||
| Conv2d_1 | 32×32×16 | 3×3×16 | 144 |
| GRU_1 | 32×32×16 | 16 | 912 |
| BN_1 | 32×32×16 | 64 | |
| Dropout_1 | 32×32×16 | 0.2 | |
| conv2d_1 | 32×32×32 | 3×3×32 | 4608 |
| GRU_2 | 32×32×32 | 32 | 4800 |
| BN_2 | 32×32×32 | 128 | |
| Dropout_2 | 32×32×32 | 0.2 | |
| Conv2d_2 | 32×32×64 | 3×3×64 | 18 432 |
| GRU_3 | 32×32×64 | 64 | 18 816 |
| BN_3 | 32×32×64 | 256 | |
| Dropout_3 | 32×32×64 | 0.2 | |
| Global Average Pooling | 64 | ||
| Softmax | 10 | 10×1 | 650 |
| 电机转频/Hz | 横向负载/kN |
|---|---|
| 20 | 0 |
| 10 | |
| 40 | 0 |
| 10 | |
| 60 | 0 |
| 10 | |
Tab.2 Operating conditions
| 电机转频/Hz | 横向负载/kN |
|---|---|
| 20 | 0 |
| 10 | |
| 40 | 0 |
| 10 | |
| 60 | 0 |
| 10 | |
| 数据集名称 | 数据类型 | 标签编号 |
|---|---|---|
| M0_G0_LA0_RA0 | 正常数据 | 0 |
| M0_G0_LA1_RA0 | 内圈故障 | 1 |
| M0_G0_LA1+LA2+LA3+LA4_RA0 | 内圈、外圈、 滚动体、保持架故障 | 2 |
| M0_G0_LA2_RA0 | 外圈故障 | 3 |
| M0_G0_LA3_RA0 | 滚动体故障 | 4 |
| M0_G0_LA4_RA0 | 保持架故障 | 5 |
| M0_G5_LA0_RA0 | 内圈故障 | 6 |
| M0_G6_LA0_RA0 | 外圈故障 | 7 |
| M0_G7_LA0_RA0 | 滚动体故障 | 8 |
| M0_G8_LA0_RA0 | 保持架故障 | 9 |
Tab.3 Data label settings
| 数据集名称 | 数据类型 | 标签编号 |
|---|---|---|
| M0_G0_LA0_RA0 | 正常数据 | 0 |
| M0_G0_LA1_RA0 | 内圈故障 | 1 |
| M0_G0_LA1+LA2+LA3+LA4_RA0 | 内圈、外圈、 滚动体、保持架故障 | 2 |
| M0_G0_LA2_RA0 | 外圈故障 | 3 |
| M0_G0_LA3_RA0 | 滚动体故障 | 4 |
| M0_G0_LA4_RA0 | 保持架故障 | 5 |
| M0_G5_LA0_RA0 | 内圈故障 | 6 |
| M0_G6_LA0_RA0 | 外圈故障 | 7 |
| M0_G7_LA0_RA0 | 滚动体故障 | 8 |
| M0_G8_LA0_RA0 | 保持架故障 | 9 |
| 批次大小 | 时间/s | 训练集准确率/% | 测试集准确率/% |
|---|---|---|---|
| 32 | 167 | 100 | 98.78 |
| 64 | 120 | 100 | 98.90 |
| 128 | 115 | 100 | 99.99 |
| 256 | 121 | 100 | 99.76 |
Tab.4 Comparison of accuracy for different batch sizes
| 批次大小 | 时间/s | 训练集准确率/% | 测试集准确率/% |
|---|---|---|---|
| 32 | 167 | 100 | 98.78 |
| 64 | 120 | 100 | 98.90 |
| 128 | 115 | 100 | 99.99 |
| 256 | 121 | 100 | 99.76 |
| 模型名称 | 划分比例 | ||
|---|---|---|---|
| 7∶3 | 6∶4 | 8∶2 | |
| MFCNN-GRU | 99.99 | 99.95 | 99.97 |
| AlexNet | 91.46 | 90.58 | 91.50 |
| GhostNet | 87.21 | 85.43 | 86.77 |
| MoblieNetV2 | 80.52 | 84.31 | 79.95 |
Tab.5 The accuracy of each model under different partition ratios
| 模型名称 | 划分比例 | ||
|---|---|---|---|
| 7∶3 | 6∶4 | 8∶2 | |
| MFCNN-GRU | 99.99 | 99.95 | 99.97 |
| AlexNet | 91.46 | 90.58 | 91.50 |
| GhostNet | 87.21 | 85.43 | 86.77 |
| MoblieNetV2 | 80.52 | 84.31 | 79.95 |
| 工况序号 | 转速/(r·min-1) | 径向力/kN |
|---|---|---|
| 1 | 2100 | 12 |
| 2 | 2250 | 11 |
| 3 | 2400 | 10 |
Tab.6 XJTU-SY bearing dataset case settings
| 工况序号 | 转速/(r·min-1) | 径向力/kN |
|---|---|---|
| 1 | 2100 | 12 |
| 2 | 2250 | 11 |
| 3 | 2400 | 10 |
| 工况 | 数据集名称 | 故障部位 | 标签编号 |
|---|---|---|---|
| 1 | Bearing 1_1 | 正常 | 0 |
| 1 | Bearing 1_1 | 外圈 | 1 |
| 1 | Bearing 1_4 | 保持架 | 2 |
| 1 | Bearing 1_5 | 内圈、外圈 | 3 |
| 2 | Bearing 2_1 | 内圈 | 4 |
| 2 | Bearing 2_3 | 保持架 | 5 |
| 2 | Bearing 2_5 | 外圈 | 6 |
| 3 | Bearing 3_1 | 外圈 | 7 |
| 3 | Bearing 3_2 | 内圈、滚动体、 保持架、外圈 | 8 |
| 3 | Bearing 3_3 | 内圈 | 9 |
Tab.7 XJTU-SY bearing dataset label settings
| 工况 | 数据集名称 | 故障部位 | 标签编号 |
|---|---|---|---|
| 1 | Bearing 1_1 | 正常 | 0 |
| 1 | Bearing 1_1 | 外圈 | 1 |
| 1 | Bearing 1_4 | 保持架 | 2 |
| 1 | Bearing 1_5 | 内圈、外圈 | 3 |
| 2 | Bearing 2_1 | 内圈 | 4 |
| 2 | Bearing 2_3 | 保持架 | 5 |
| 2 | Bearing 2_5 | 外圈 | 6 |
| 3 | Bearing 3_1 | 外圈 | 7 |
| 3 | Bearing 3_2 | 内圈、滚动体、 保持架、外圈 | 8 |
| 3 | Bearing 3_3 | 内圈 | 9 |
| [1] | 赵志宏, 李春秀, 窦广鉴, 等. 基于MTF-CNN的轴承故障诊断研究 [J]. 振动与冲击, 2023, 42(2):126-131. |
| ZHAO Zhihong, LI Chunxiu, DOU Guangjian, et al. Research on Bearing Fault Diagnosis Based on MTF-CNN [J]. Vibration and Shock, 2023, 42(2):126-131. | |
| [2] | 杨平, 苏燕辰, 张振. 基于卷积胶囊网络的滚动轴承故障诊断研究 [J]. 振动与冲击, 2020, 39(4):55-62. |
| YANG Ping, SU Yanchen, ZHANG Zhen. Research on Fault Diagnosis of Rolling Bearing Based on Convolutional Capsule Network [J]. Vibration and Shock, 2020, 39(4):55-62. | |
| [3] | 李俊卿, 刘静. 结合卷积神经网络和迁移学习的电机轴承故障诊断方法[J]. 华北电力大学学报(自然科学版), 2023, 50(1):76-83. |
| LI Junqing, LIU Jing. Fault Diagnosis Method of Motor Bearing Based on Convolutional Neural Network and Transfer Learning [J]. Journal of North China Electric Power University (Natural Science Edition), 2023, 50(1):76-83. | |
| [4] | 赵靖, 杨绍普, 李强, 等. 一种残差注意力迁移学习方法及其在滚动轴承故障诊断中的应用 [J]. 中国机械工程, 2023, 34(3):332-343. |
| ZHAO Jing, YANG Shaopu, LI Qiang, et al. A New Transfer Learning Method with Residual Attention and Its Applications on Rolling Bearing Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(3):332-343. | |
| [5] | 陈保家, 陈学力, 沈保明, 等. CNN-LSTM深度神经网络在滚动轴承故障诊断中的应用 [J]. 西安交通大学学报, 2021, 55(6):28-36. |
| CHEN Baojia, CHEN Xueli, SHEN Baoming, et al. Application of CNN-LSTM Deep Neural Network in Fault Diagnosis of Rolling Bearings [J]. Journal of Xi'an Jiaotong University, 2021, 55(6):28-36. | |
| [6] | 邹筱瑜, 孙国庆, 王忠宾, 等. 基于时频融合深度网络的矿用钻机轴承故障诊断 [J]. 中国机械工程, 2024, 35(8):1405-1413. |
| ZOU Xiaoyu, SUN Guoqing, WANG Zhongbin, et al. Bearing Fault Diagnosis of Mining Drilling Rig with Time-frequency-fused Deep Network [J]. China Mechanical Engineering, 2024, 35(8):1405-1413. | |
| [7] | 宫文峰, 陈辉, 张泽辉, 等. 基于改进卷积神经网络的滚动轴承智能故障诊断研究 [J]. 振动工程学报, 2020, 33(2):400-413. |
| GONG Wenfeng, CHEN Hui, ZHANG Zehui, et al. Research on Intelligent Fault Diagnosis of Rolling Bearings Based on Improved Convolutional Neural Network [J]. Journal of Vibration Engineering, 2020, 33(2):400-413. | |
| [8] | FU Guanghua, WEI Qingjuan, YANG Yongsheng. Bearing Fault Diagnosis with Parallel CNN and LSTM [J]. Mathematical Biosciences and Engineering, 2024, 21(2):2385-2406. |
| [9] | WU Chunming, ZHENG Shupeng. Fault Diagnosis Method of Rolling Bearing Based on MSCNN-LSTM [J]. Computers, Meterials & Continua, 2024, 79(3):4395-4411. |
| [10] | 刘玉鑫, 武文博, 张雄, 等. 基于 HHO-CNN 的轴承故障诊断方法研究 [J]. 河北大学学报(自然科学版), 2023, 43(6):571-583. |
| LIU Yuxin, WU Wenbo, ZHANG Xiong, et al. Research on Bearing Fault Diagnosis Method Based on HHO-CNN [J]. Journal of Hebei University (Natural Science Edition), 2023, 43(6):571-583. | |
| [11] | CHEN Guangyi, TANG Gang, ZHU Zhixiao. VKCNN:an Interpretable Variational Kernel Convolutional Neural Network for Rolling Bearing Fault Diagnosis [J]. Advanced Engineering Informatics, 2024, 62(B):102705. |
| [12] | LIU Fang, LIANG Chen, GUO Zhihao, et al. Fault Fiagnosis of Rolling Bearings under Varying Speeds Based on Gray Level Cooccurrence Matrix and DCCNN [J]. Measurement, 2024, 235:114955. |
| [13] | CHO K, van MERRIENBOER B, GULCEHRE C, et al. Leaning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation [J]. ArXiv, 2014, 1406:1724-1734. |
| [14] | 刘建伟, 宋志妍. 循环神经网络研究综述 [J]. 控制与决策, 2022, 37(11):2753-2768. |
| LIU JIANwei, SONG Zhiyan. A Review of Recurrent Neural Networks [J]. Control and Decision, 2022, 37(11):2753-2768. | |
| [15] | 唐贵基, 周威, 王晓龙, 等. 基于变维GRU-BiLSTM神经网络模型的滚动轴承寿命预测 [J]. 中国工程机械学报, 2022, 20(6):498-503. |
| TANG Guiji, ZHOU Wei, WANG Xiaolong, et al. Life Prediction of Rolling Bearings Based on Variable Dimensionality GRU-BiLSTM Neural Network Model [J]. Proceedings of the China Society of Engineering Machinery, 2022, 20(6):498-503. | |
| [16] | 朱云贵, 郭瑜, 陈鑫, 等. 优化AR模型的滚动轴承故障IAS信号诊断方法 [J]. 振动工程学报, 2024, 37(12):2141-2147. |
| ZHU Yungui, GUO Yu, CHEN Xin, et al. Diagnostic Method for Rolling Bearing Fault IAS Signal Based on Optimized AR Model [J]. Journal of Vibration Engineering, 2024, 37(12):2141-2147. | |
| [17] | Yin Shuxin, Chen Zengxu. Research on Compound Fault Diagnosis of Bearings Using an Improved DRSN-GRU Dual-channel Model [J]. IEEE Sensors Journal, 2024, 24(21):35304-35311. |
| [18] | DING Ao, QIN Yong, WANG Biao, et al. Evolvable Graph Neural Network for System-level Incremental Fault Diagnosis of Train Transmission Systems [J]. Mechanical Systems and Signal Processing, 2024, 210:111-175. |
| [19] | WANG Biao, LEI Yaguo, LI Naipeng, et al. A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings [J]. IEEE Transactions on Reliability, 2020, 69(1):401-412. |
| [1] |
HU Chao, LIU Zuo-Min.
Research on Rolling Bearing’s Heathcote’s Stick-slip Model Based on Materials Compatibility
[J]. J4, 201016, 21(16): 1969-1973.
|
| [2] | Zhaojing TONG, Pengchao WANG, Yongkui FAN, Guangyang HAN, Ziqi WANG. Fault Diagnosis Method of Rolling Bearings Based on Improved Refined Composite Multiscale Sample Entropy and Bayesian Network [J]. China Mechanical Engineering, 2025, 36(12): 2952-2959. |
| [3] | Jianjian WANG, Yuhe LIAO, Lei YANG, Jiutao XUE. Rotor Unbalance Recognition Based on Multidimensional Complex Feature Fusion and CNN-GRU [J]. China Mechanical Engineering, 2025, 36(09): 1905-1915. |
| [4] | Huiming YANG, Xia YANG, Yuqi HUANG. Full-cycle Fatigue Life Prediction of Rolling Bearings Based on Paris Modeling [J]. China Mechanical Engineering, 2025, 36(09): 2003-2010. |
| [5] | Zitong YUE, Yanting LI, Yu ZHAO. Condition Monitoring of Wind Turbines Based on Neural Networks and Robust Estimation [J]. China Mechanical Engineering, 2025, 36(08): 1842-1852. |
| [6] | ZHANG Jianyu, WANG Liuzhen, XIAO Yong, MA Yanan. Fusion of Degradation Feature Information and Remaining Life Prediction for Rolling Bearings [J]. China Mechanical Engineering, 2025, 36(07): 1553-1561. |
| [7] | SONG Lijun, LIU Songlin, XIN Yu, MA Jinghua, XIE Zhengqiu. Residual Life Prediction for Bearings Based on Bearing Degradation State Assessment and IGAT-BiGRU Network [J]. China Mechanical Engineering, 2025, 36(07): 1562-1572. |
| [8] | YANG Kang1, CHEN Xuejun1, 2, ZHANG Lei3, LIU Feng3. Cross-domain Fault Diagnosis of Bearings Based on Joint Subdomain Contrast Alignment [J]. China Mechanical Engineering, 2025, 36(05): 1065-1073. |
| [9] | YANG Heran1, 2, ZHANG Peijie1, 2, SUN Xingwei1, 2, PAN Fei1, 2, LIU Yin1, 2. Surface Roughness Prediction for Screw Belt Grinding Based on Improved CNN [J]. China Mechanical Engineering, 2025, 36(02): 325-332. |
| [10] | LI Jimeng, WANG Ze, SHI Qingxin, MENG Zong. Rolling Bearing Fault Diagnosis of Wind Turbines Based on Frequency Domain Group Sparse Model with Graph Regularization Constraints [J]. China Mechanical Engineering, 2024, 35(11): 1909-1919. |
| [11] | GUO Haiyu1, ZOU Shenggong1, ZHANG Xiaoguang2, 3, 4, LU Fanfan2CHEN Yang2, WANG Han2, XU Xinzhi2. Fault Diagnosis of Rotating Machinery Bearings Based on Multi-source Wavelet Transform Neural Network [J]. China Mechanical Engineering, 2024, 35(11): 2026-2034. |
| [12] | LI Guolong1, XIAO Yang1, LI Zheyu1, XU Kai2, ZHANG Wei1. Simultaneous Measurement and Modeling of MDOF Static/Thermal Errors of CNC Machine Tool Rotational Axes [J]. China Mechanical Engineering, 2024, 35(08): 1426-1434. |
| [13] | QIN Guohao, ZHANG Kai, DING Kun, HUANG Fengfei, ZHENG Qing, DING Guofu, . Dynamic Wide Convolutional Residual Network for Bearing Fault Diagnosis Method [J]. China Mechanical Engineering, 2023, 34(18): 2212-2221. |
| [14] | QIAN Mengui, CHEN Tao, YU Yaoxiang, GUO Liang, GAO Hongli, LI Weilin, . A Method for Constructing Bearing HIs with IGI Weighting [J]. China Mechanical Engineering, 2023, 34(15): 1813-1819,1855. |
| [15] | DONG Shaojiang, ZHOU Cunfang, CHEN Lili, XU Xiangyang. Cross-domain Fault Diagnosis of Bearings Based on Discriminant Feature Extraction and Dual-domain Alignment [J]. China Mechanical Engineering, 2023, 34(15): 1856-1863. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||