China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2952-2959.DOI: 10.3969/j.issn.1004-132X.2025.12.018

Previous Articles    

Fault Diagnosis Method of Rolling Bearings Based on Improved Refined Composite Multiscale Sample Entropy and Bayesian Network

Zhaojing TONG1,2(), Pengchao WANG1,2, Yongkui FAN1,2, Guangyang HAN1,2, Ziqi WANG1,2   

  1. 1.School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo,Henan,454003
    2.Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment,Jiaozuo,Henan,454003
  • Received:2024-12-17 Online:2025-12-25 Published:2025-12-31
  • Contact: Zhaojing TONG

基于改进精细复合多尺度样本熵与贝叶斯网络的滚动轴承故障诊断方法

仝兆景1,2(), 王鹏超1,2, 樊永奎1,2, 韩广洋1,2, 王自奇1,2   

  1. 1.河南理工大学电气工程与自动化学院, 焦作, 454003
    2.河南省煤矿装备智能检测与控制重点实验室, 焦作, 454003
  • 通讯作者: 仝兆景
  • 作者简介:仝兆景*(通信作者),男,1979年生,副教授。研究方向为装备故障诊断、智能检测。发表论文50余篇。E-mail: tong_zjing@hpu.edu.cn
  • 基金资助:
    国家自然科学基金(U1504623);河南省软科学研究计划(252400410717);河南省高等教育教学改革研究与实践项目(研究生教育类)(2023SJGL X144Y);河南理工大学研究生教改项目(2023YJ20)

Abstract:

To address the issues of traditional MSE, such as the loss of feature information during the coarse-graining processes and the difficulty in extracting feature information from fault signals at large scale factors, a method for rolling bearing fault diagnosis was proposed based on improved refined composite multiscale sample entropy(IRCMSE) combined with an AOA optimized Bayesian network. The traditional coarse-graining processes, which involved averaging, were replaced with a cross-sampling method to obtain time series at each scale, and the method of calculating entropy values at different scales was changed to extract feature information from the time series. IRCMSE was used to extract the fault feature information of rolling bearings, forming fault feature samples. These fault feature samples were then input into the Bayesian network model optimized by AOA for fault recognition. The improved method is experimentally compared with fault diagnosis methods based on MSE, multiscale dispersion entropy, and refined composite multiscale sample entropy (RCMSE), verifying the feasibility of the proposed method and demonstrating a higher fault recognition rate.

Key words: rolling bearing, multiscale sample entropy (MSE), fault diagnosis, Bayesian network, arithmetic optimization algorithm(AOA)

摘要:

针对传统多尺度样本熵(MSE)在粗粒化过程中易造成特征信息丢失、在尺度因子较大时故障信号中的特征信息不易提取等问题,提出一种基于改进的精细复合多尺度样本熵(IRCMSE)与算术优化算法(AOA)优化贝叶斯网络的滚动轴承故障诊断方法。将传统粗粒化过程中求均值的处理方式替换为交叉采样的方式,得到每一尺度的时间序列,并改变不同尺度下计算熵值的方法,提取时间序列的特征信息。利用IRCMSE提取滚动轴承故障特征信息,构成故障特征样本,将故障特征样本输入到AOA优化后的贝叶斯网络模型中进行故障识别。将改进方法与基于多尺度样本熵、多尺度散布熵(MDE)和精细复合多尺度样本熵(RCMSE)的故障诊断方法进行对比实验,验证了所提方法的可行性且具有更高的故障识别率。

关键词: 滚动轴承, 多尺度样本熵, 故障诊断, 贝叶斯网络, 算术优化算法

CLC Number: