中国机械工程 ›› 2025, Vol. 36 ›› Issue (8): 1853-1863.DOI: 10.3969/j.issn.1004-132X.2025.08.020
• 服务型制造 • 上一篇
收稿日期:
2024-05-16
出版日期:
2025-08-25
发布日期:
2025-09-18
通讯作者:
周一帆
作者简介:
汪 凯,男,2000年生,硕士研究生。研究方向维修优化等基金资助:
Kai WANG1, Liudong GU2, Yifan ZHOU1()
Received:
2024-05-16
Online:
2025-08-25
Published:
2025-09-18
Contact:
Yifan ZHOU
摘要:
在维修与备件库存联合优化时,已有的研究大多假设系统状态监测是完美的,忽略了实际应用中的误差。为了解决该问题,以包含不完美状态监测和固定检修周期的单部件系统为研究对象,考虑该系统的视情维修(CBM)与备件库存管理问题,采用部分可观测的马尔可夫决策过程(POMDP)对系统进行建模,并推导系统状态转移概率。为了处理复杂的信念状态空间,提高算法求解效率,采用了一种改进的Perseus算法。在数值案例部分验证了该算法的有效性,并对最优策略结构进行分析,结果表明:信念状态相比于观测值能相对合理地表示状态信息,同时也对比了有无备件库存的情况,证明了备件库存的有效性。
中图分类号:
汪凯, 顾刘栋, 周一帆. 基于POMDP模型的检修与备件库存联合优化[J]. 中国机械工程, 2025, 36(8): 1853-1863.
Kai WANG, Liudong GU, Yifan ZHOU. Joint Optimization of Inspection, Maintenance and Spare Parts Inventory Based on POMDP Model[J]. China Mechanical Engineering, 2025, 36(8): 1853-1863.
0.4 | 1.6 | 0.3 | 0.99 | 5 | 10 | 25 | 5 |
90 | 300 | 30 | 50 | 6 | 1 | 2 |
表1 系统及成本参数
Tab.1 System and cost parameters
0.4 | 1.6 | 0.3 | 0.99 | 5 | 10 | 25 | 5 |
90 | 300 | 30 | 50 | 6 | 1 | 2 |
状态数 | 算法 | 时间/s | 期望成本 | |
---|---|---|---|---|
5 | 原始Perseus算法 | 65 | 18 | 6.18 |
改进的Perseus算法 | 41 | 12 | ||
10 | 原始Perseus算法 | 2492 | 38 | 6.15 |
改进的Perseus算法 | 856 | 24 |
表2 不同规模下算法性能对比
Tab.2 Comparison of algorithm performance at different scales
状态数 | 算法 | 时间/s | 期望成本 | |
---|---|---|---|---|
5 | 原始Perseus算法 | 65 | 18 | 6.18 |
改进的Perseus算法 | 41 | 12 | ||
10 | 原始Perseus算法 | 2492 | 38 | 6.15 |
改进的Perseus算法 | 856 | 24 |
实验 | 长期期望成本 | 参数化策略 |
---|---|---|
本文实验 | 6.18 | / |
对比实验1 | 6.81 | / |
对比实验2 | 8.31 |
表3 不同实验下的成本与策略
Tab.3 Costs and strategies under different experiments
实验 | 长期期望成本 | 参数化策略 |
---|---|---|
本文实验 | 6.18 | / |
对比实验1 | 6.81 | / |
对比实验2 | 8.31 |
参数 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | 40 | 50 | 0 | 5 | 10 | 4 | 6 | 8 | 1 | 2 | 3 | 3 | 5 | 10 | |
成本 | 5.92 | 6.05 | 6.18 | 4.23 | 6.18 | 6.95 | 6.05 | 6.18 | 6.31 | 5.57 | 6.18 | 6.71 | 6.95 | 6.18 | 6.15 |
表4 不同参数下的期望成本
Tab.4 Expected costs under different parameters
参数 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | 40 | 50 | 0 | 5 | 10 | 4 | 6 | 8 | 1 | 2 | 3 | 3 | 5 | 10 | |
成本 | 5.92 | 6.05 | 6.18 | 4.23 | 6.18 | 6.95 | 6.05 | 6.18 | 6.31 | 5.57 | 6.18 | 6.71 | 6.95 | 6.18 | 6.15 |
[1] | 徐兆平, 郭波. 复杂装备故障预测方法研究综述[J]. 长沙理工大学学报(自然科学版), 2023, 20(2): 10-26. |
XU Zhaoping, GUO Bo. A Research Review on Fault Prognostic Techniques for Complex Equipments[J]. Journal of Changsha University of Science & Technology (Natural Science), 2023, 20(2): 10-26. | |
[2] | LI H, ZHOU Y. Joint Optimization of Condition-based Maintenance and Spare Parts Orders for a Two-unit System[C]∥2022 Global Reliability and Prognostics and Health Management. Yantai, 2022: 1-6. |
[3] | WANG Jingjing, QIU Qingan, WANG Huanhuan. Joint Optimization of Condition-based and Age-based Replacement Policy and Inventory Policy for a Two-unit Series System[J]. Reliability Engineering & System Safety, 2021, 205: 107251. |
[4] | ZHENG Meimei, LIN Jie, XIA Tangbin, et al. Joint Condition-based Maintenance and Spare Provisioning Policy for a K-out-of-N System with Failures during Inspection Intervals[J]. European Journal of Operational Research, 2023, 308(3): 1220-1232. |
[5] | TCHAKOUA P, WAMKEUE R, TAMEGHE T A, et al. A Review of Concepts and Methods for Wind Turbines Condition Monitoring[C]∥2013 World Congress on Computer and Information Technology (WCCIT). Sousse, Tunisia, 2013: 1-9. |
[6] | LI Yanrong, PENG Shizhe, LI Yanting, et al. A Review of Condition-based Maintenance: Its Prognostic and Operational Aspects[J]. Frontiers of Engineering Management, 2020, 7(3): 323-334. |
[7] | 张红旗, 邵晓东, 胡祥涛. 基于部分可观察马尔可夫决策过程的机电装备动态可靠性评价方法[J]. 中国机械工程, 2016, 27(18): 2482-2486. |
ZHANG Hongqi, SHAO Xiaodong, HU Xiangtao. Dynamic Reliability Assessment Method Based on POMDP for Electromechanical Equipment[J]. China Mechanical Engineering, 2016, 27(18): 2482-2486. | |
[8] | 刘大玲, 黄小钢. 高速铁路无砟轨道系统状态监测及预防性维修[J]. 中国机械工程, 2019, 30(3): 349-353. |
LIU Daling, HUANG Xiaogang. Condition Monitoring and Preventive Maintenance of Ballastless Track Systems for High-speed Railways[J]. China Mechanical Engineering, 2019, 30(3): 349-353. | |
[9] | ROUX M, FANG Y P, BARROS A. Maintenance Planning under Imperfect Monitoring: an Efficient POMDP Model Using Interpolated Value Function[J]. IFAC-PapersOnLine, 2022, 55(16): 128-135. |
[10] | MORATO P G, NIELSEN J S, MAI A Q, et al. POMDP Based Maintenance Optimization of Offshore Wind Substructures Including Monitoring[C]∥13th International Conference on Applications of Statistics and Probability in Civil Engineering. Seoul, 2019:1-8. |
[11] | NGUYEN K T, DO P, HUYNH K T, et al. Joint Optimization of Monitoring Quality and Replacement Decisions in Condition-based Maintenance[J]. Reliability Engineering & System Safety, 2019, 189: 177-195. |
[12] | ZHAO Fei, LIU Xuejuan, PENG Rui, et al. Joint Optimization of Inspection and Spare Ordering Policy with Multi-level Defect Information[J]. Computers & Industrial Engineering, 2020, 139: 106205. |
[13] | 张奥. 考虑状态演变过程的高速铁路牵引供电设备维修策略[D]. 成都: 西南交通大学, 2017. |
ZHANG Ao. High Speed Railway Traction Power Supply Equipment Maintenance Strategy Considering State Evolution Process[D]. Chengdu: Southwest Jiaotong University, 2017. | |
[14] | 张龙, 黄文艺, 熊国良, 等. 基于多域特征与高斯混合模型的滚动轴承性能退化评估[J]. 中国机械工程, 2014, 25(22): 3066-3072. |
ZHANG Long, HUANG Wenyi, XIONG Guoliang, et al. Assessment of Rolling Bearing Performance Degradation Using Gauss Mixture Model and Multi-domain Features[J]. China Mechanical Engineering, 2014, 25(22): 3066-3072. | |
[15] | van NOORTWIJK J M. A Survey of the Application of Gamma Processes in Maintenance[J]. Reliability Engineering & System Safety, 2009, 94(1): 2-21. |
[16] | NEWBY M J, BARKER C T. A Bivariate Process Model for Maintenance and Inspection Planning[J]. International Journal of Pressure Vessels and Piping, 2006, 83(4): 270-275. |
[17] | SUTTON R S, BARTO A G. Reinforcement Learning: an Introduction[M]. Cambridge: The MIT Press, 2018. |
[18] | BRODY D C, HUGHSTON L P, MACRINA A. Dam Rain and Cumulative Gain[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464(2095): 1801-1822. |
[19] | PARK C, PADGETT W J. Accelerated Degradation Models for Failure Based on Geometric Brownian Motion and Gamma Processes[J]. Lifetime Data Analysis, 2005, 11(4): 511-527. |
[20] | SHANI G, PINEAU J, KAPLOW R. A Survey of Point-based POMDP Solvers[J]. Autonomous Agents and Multi-Agent Systems, 2013, 27(1): 1-51. |
[21] | VIRIN Y, SHANI G, SHIMONY S E, et al. Scaling Up: Solving POMDPs through Value Based Clustering[C]∥AAAI Conference on Artificial Intelligence. Vancouver, 2007:1290-1295. |
[22] | YANG Li, YE Zhisheng, LEE C G, et al. A Two-phase Preventive Maintenance Policy Considering Imperfect Repair and Postponed Replacement[J]. European Journal of Operational Research, 2019, 274(3): 966-977. |
[23] | 周一帆, 郭凯, 李帮诚. 基于多智能体强化学习的多部件系统维修优化[J]. 长沙理工大学学报(自然科学版), 2023, 20(2): 27-34. |
ZHOU Yifan, GUO Kai, LI Bangcheng. Maintenance Optimization of Multi-component System Based on Multi-agent Reinforcement Learning[J]. Journal of Changsha University of Science & Technology (Natural Science), 2023, 20(2): 27-34. |
[1] | 葛红玉, 赵展, 郭安祥, 孙佳瑞. 基于SABO-VMD的数控机床元动作单元故障可诊断性评价[J]. 中国机械工程, 2025, 36(8): 1774-1783. |
[2] | 尹佳1, 郑健2, 刘尧3, 贾保国1, 段晓蕊1. 基于多源信息融合和集成学习的薄壁件铣削加工变形误差预测[J]. 中国机械工程, 2025, 36(06): 1261-1268. |
[3] | 杨康1, 陈学军1, 2, 张磊3, 刘烽3. 基于联合子域对比对齐的轴承跨域故障诊断[J]. 中国机械工程, 2025, 36(05): 1065-1073. |
[4] | 郭海宇1, 邹圣公1, 张晓光2, 3, 4, 陆凡凡2, 陈洋2, 王涵2, 徐新志2. 基于多源小波变换神经网络的旋转机械轴承故障诊断[J]. 中国机械工程, 2024, 35(11): 2026-2034. |
[5] | 刘小峰, 亢莹莹, 柏林. 轴承自驱式独立退化轨迹构建与剩余寿命灰色预测[J]. 中国机械工程, 2024, 35(09): 1613-1621,1652. |
[6] | 李灿1, 2, 王广斌2, 1, 赵树标1, 2, 钟志贤1, 张慧1, 2. 采用集约化开放集差异分布对齐策略的轴承故障诊断方法[J]. 中国机械工程, 2024, 35(09): 1622-1633. |
[7] | 王秋莲1, 欧桂雄1, 徐雪娇1, 刘锦荣1, 马国红2, 邓红标2. 基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究[J]. 中国机械工程, 2024, 35(06): 1052-1063. |
[8] | 肖刚, 顾海瑞, 董锦锦, 王琪冰, 陆佳炜. 仿真数据驱动的长期服役电梯导轨故障迁移诊断方法[J]. 中国机械工程, 2024, 35(01): 125-135. |
[9] | 于树博, 刘占生, 赵辰. 动力学仿真数据驱动的域自适应智能诊断方法[J]. 中国机械工程, 2023, 34(23): 2832-2841. |
[10] | 籍永建, 姚利诚, . 机器人铣削加工颤振自适应识别方法研究[J]. 中国机械工程, 2023, 34(18): 2165-2176. |
[11] | 沈子钰, 张砦, 王友仁, 李泓锟. 行星轮齿轮箱太阳轮齿根裂纹传递特性分析[J]. 中国机械工程, 2023, 34(18): 2177-2185. |
[12] | 李鑫, 程军圣, 吴小伟, 王健, 杨宇, . SPCA和OCHD相结合的旋转机械早期微弱故障检测方法[J]. 中国机械工程, 2023, 34(15): 1805-1812. |
[13] | 刘尧, 陈改革, 刘振国, 孔宪光, 常建涛. 关联规则挖掘驱动的盾构机刀盘健康评估方法[J]. 中国机械工程, 2023, 34(11): 1326-1334,1342. |
[14] | 张龙, 胡燕青, 赵丽娟, 张号. 多通道信息融合与深度迁移学习的旋转机械故障诊断[J]. 中国机械工程, 2023, 34(08): 966-975. |
[15] | 董绍江, 朱朋, 朱孙科, 刘兰徽, 邢镔, 胡小林. 基于仿真数据驱动和领域自适应的滚动轴承故障诊断方法[J]. 中国机械工程, 2023, 34(06): 694-702. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||