中国机械工程 ›› 2025, Vol. 36 ›› Issue (9): 2022-2031.DOI: 10.3969/j.issn.1004-132X.2025.09.014
• 智能制造 • 上一篇
收稿日期:
2024-05-17
出版日期:
2025-09-25
发布日期:
2025-10-15
通讯作者:
张新
作者简介:
冯思茜,女,2000年生,硕士研究生。研究方向为故障诊断。E-mail:siqianfeng_lu@163.com基金资助:
Siqian FENG1(), Jiaxu WANG1,2, Xin ZHANG1,3(
), Xinyue HUANG1
Received:
2024-05-17
Online:
2025-09-25
Published:
2025-10-15
Contact:
Xin ZHANG
摘要:
为实现滚动轴承微弱特征提取与故障诊断,提出了一种基于子带重构重排-双树复小波包变换(SRR-DTCWPT)与峰值频率提取的共振解调新方法。基于SRR-DTCWPT的频带划分方法较为精细,并且在保持DTCWPT近似平移不变性和谱能量泄漏少的优点的同时解决了频带错乱的问题。基于SRR-DTCWPT与峰值频率提取的共振解调方法不需要任何指标参与,能提取任意位置的频带,避免了强冲击干扰的影响,且计算过程自动化。将所提方法与Fast Kurtogram和Autogram算法进行比较,验证了该方法在滚动轴承故障诊断中的有效性与高效性。
中图分类号:
冯思茜, 王家序, 张新, 黄欣玥. 基于共振解调新方法的滚动轴承故障诊断[J]. 中国机械工程, 2025, 36(9): 2022-2031.
Siqian FENG, Jiaxu WANG, Xin ZHANG, Xinyue HUANG. Rolling Bearing Fault Diagnosis Using a New Resonance Demodulation Method[J]. China Mechanical Engineering, 2025, 36(9): 2022-2031.
l | ||||
---|---|---|---|---|
3.2 | 200 | 0.005 | 0.13 | |
3.6 | 240 | 0.02 | 0.26 | |
3.0 | 260 | 0.02 | 0.63 |
表1 b2(t)的具体参数
Tab.1 The specific parameters of b2(t)
l | ||||
---|---|---|---|---|
3.2 | 200 | 0.005 | 0.13 | |
3.6 | 240 | 0.02 | 0.26 | |
3.0 | 260 | 0.02 | 0.63 |
[1] | 秦国浩, 张楷, 丁昆, 等. 动态宽卷积残差网络的轴承故障诊断方法[J]. 中国机械工程, 2023, 34(18):2212-2221. |
QIN Guohao, ZAHNG Kai, DING Kun, et al. Dynamic Wide Convolutional Residual Network for Bearing Fault Diagnosis Method[J]. China Mechanical Engineering, 2023, 34(18):2212-2221. | |
[2] | 张龙, 胡燕青, 赵丽娟, 等. 多通道信息融合与深度迁移学习的旋转机械故障诊断[J]. 中国机械工程, 2023, 34(8):966-975. |
ZHANG Long, HU Yanqing, ZHAO Lijuan, et al. Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis[J]. China Mechanical Engineering, 2023, 34(8):966-975. | |
[3] | ZHAO Y K, ZHANG X, WANG J X, et al. A New Data Fusion Driven-sparse Representation Learning Method for Bearing Intelligent Diagnosis in Small and Unbalanced Samples[J]. Engineering Applications of Artificial Intelligence, 2023, 117:105513. |
[4] | 陈剑, 许畅, 徐庭亮. 基于位错叠加法和改进概率神经网络的离心泵故障诊断方法[J]. 中国机械工程, 2023, 34(23):2854-2861. |
CHEN Jian, XU Chang, XU Tingliang. Centrifugal Pump Fault Diagnosis Methods Based on Dislocation Superposition Methods and Improved Probabilistic Neural Networks[J]. China Mechanical Engineering, 2023, 34(23):2854-2861. | |
[5] | 赵艺珂, 张新, 王家序, 等. 基于增强最小熵解卷积的航空发动机故障诊断[J]. 中国机械工程, 2023, 34(2):193-200. |
ZHAO Yike, ZAHNG Xin, WANG Jiaxu, et al. Aero-engine Fault Diagnosis Based on an Enhanced Minimum Entropy Deconvolution[J]. China Mechanical Engineering, 2023, 34(2):193-200. | |
[6] | SUN J K, ZHANG X, WANG J X. Lightweight Bidirectional Long Short-term Memory Based on Automated Model Pruning with Application to Bearing Remaining Useful Life Prediction[J]. Engineering Applications of Artificial Intelligence, 2023, 118:105662. |
[7] | ZHANG X, ZHANG Z Q, WANG J X, et al. Reweighted-Kurtogram with Sub-bands Rearranged and Ensemble Dual-tree Complex Wavelet Packet Transform for Bearing Fault Diagnosis [J]. Structural Health Monitoring, 2022, 21 (6):2951-2967. |
[8] | HARTING D R. Demodulated Resonance AnalysisLa Powerful Incipient Failure Detection Technique[J]. ISA Transactions, 1978, 17(1):35-40. |
[9] | DWYER R. Detection of Non-gaussian Signals by Frequency Domain Kurtosis Estimation[C]∥IEEE International Conference on Acoustics and Signal Processing. Boston, 1983, 8:607-610. |
[10] | ANTONI J, RANDALL R B. The Spectral Kurtosis Application to the Vibratory Surveillance and Diagnostics of Rotating Machines[J]. Mechanical Systems and Signal Processing, 2006, 20(2):308-331. |
[11] | ANTONI J. Fast Computation of the Kurtogram for the Detection of Transient Faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1):108-124. |
[12] | LEI Y, LIN J, HE Z, et al. Application of an Improved Kurtogram Method for Fault Diagnosis of Rolling Element Bearings[J]. Mechanical Systems and Signal Processing, 2011, 25(5):1738-1749. |
[13] | CHEN J, ZI Y, HE Z, et al. Improved Spectral Kurtosis with Adaptive Redundant Multiwavelet Packet and Its Applications for Rotating Machinery Fault Detection[J]. Measurement Science and Technology, 2012, 23(4):045608. |
[14] | CHEN B Q, ZHANG Z S, ZI Y Y, et al. Detecting of Transient Vibration Signatures Using an Improved Fast Spatial-spectral Ensemble Kurtosis Kurtogram and Its Applications to Mechanical Signature Analysis of Short Duration Data from Rotating Machinery[J]. Mechanical Systems and Signal Processing, 2013, 40(1):1-37. |
[15] | MOSHREFZADEH A, FASANA A. The AutogramLan Effective Approach for Selecting the Optimal Demodulation Band in Rolling Element Bearings Diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 105:294-318. |
[16] | WANG D, PETER W T, TSUI K L. An Enhanced Kurtogram Method for Fault Diagnosis of Rolling Element Bearings[J]. Mechanical Systems and Signal Processing, 2013, 35(1/2):176-199. |
[17] | ANTONI J. The Spectral KurtosisLa Useful Tool for Characterising Non-stationary Signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2):282-307. |
[18] | KINGSBURY N. Shift Invariant Properties of the Dual-tree Complex Wavelet Transform[C]∥IEEE International Conference on Acoustics and Signal Processing.Phoenix, 1999, 3:1221-1224. |
[19] | WANG L, LIU Z, CAO H, et al. Subband Averaging Kurtogram with Dual-tree Complex Wavelet Packet Transform for Rotating Machinery Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2020, 142:106755. |
[1] | 焦华超, 孙文磊, 王宏伟. 基于类小波辅助分类生成对抗网络的轴承故障数据生成方法[J]. 中国机械工程, 2025, 36(03): 546-557. |
[2] | 郭海宇1, 邹圣公1, 张晓光2, 3, 4, 陆凡凡2, 陈洋2, 王涵2, 徐新志2. 基于多源小波变换神经网络的旋转机械轴承故障诊断[J]. 中国机械工程, 2024, 35(11): 2026-2034. |
[3] | 李灿1, 2, 王广斌2, 1, 赵树标1, 2, 钟志贤1, 张慧1, 2. 采用集约化开放集差异分布对齐策略的轴承故障诊断方法[J]. 中国机械工程, 2024, 35(09): 1622-1633. |
[4] | 赵靖, 杨绍普, 李强, 刘永强, . 一种残差注意力迁移学习方法及其在滚动轴承故障诊断中的应用[J]. 中国机械工程, 2023, 34(03): 332-343. |
[5] | 温江涛, 张鹏程, 孙洁娣, 雷鸣. 残差卷积自编码网络无监督迁移轴承故障诊断[J]. 中国机械工程, 2022, 33(14): 1707-1716. |
[6] | 何强, 唐向红, 李传江, 陆见光, 陈家兑. 负载不平衡下小样本数据的轴承故障诊断[J]. 中国机械工程, 2021, 32(10): 1164-1171,1180. |
[7] | 王珂1,2;吕勇1,2;易灿灿1,2. 压缩感知框架下的共振解调故障诊断方法[J]. 中国机械工程, 2018, 29(16): 1907-1911. |
[8] | 张淑清1;李威1;张立国1,2;胡永涛1;钱;磊1;姜万录1. 基于多元经验模态分解互近似熵及GG聚类的轴承故障诊断[J]. 中国机械工程, 2016, 27(24): 3362-3367. |
[9] | 马新娜, 杨绍普. 基于三维谱峭图算法的共振解调技术研究及应用[J]. 中国机械工程, 2016, 27(22): 3038-3042. |
[10] | 李鑫滨, 马阳, 邱建坤, 张淑清. 基于压缩感知弱匹配追踪算法的信号特征提取[J]. 中国机械工程, 2014, 25(24): 3314-3320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||