[1]CERRADA M, SNCHEZ R V, LI Chuan, et al. A Review on Data-driven Fault Severity Assessment in Rolling Bearings[J]. Mechanical Systems and Signal Processing, 2018, 99:169-196.
[2]秦国浩, 张楷, 丁昆, 等. 动态宽卷积残差网络的轴承故障诊断方法[J]. 中国机械工程, 2023, 34(18):2212-2221.
QIN Guohao, ZHANG Kai, DING Kun, et al. Dynamic Wide Convolutional Residual Network for Bearing Fault Diagnosis Method[J]. China Mechanical Engineering, 2023, 34(18):2212-2221.
[3]徐硕, 邓艾东, 杨宏强, 等. 基于改进残差网络的旋转机械故障诊断[J]. 太阳能学报, 2023, 44(7):409-418.
XU Shuo, DENG Aidong, YANG Hongqiang, et al. Rotating Machinery Fault Diagnosis Method Based on Improved Residual Neural Network[J]. Acta Energiae Solaris Sinica, 2023, 44(7):409-418.
[4]刘洋, 程强, 史曜炜, 等. 基于注意力模块及1D-CNN的滚动轴承故障诊断[J]. 太阳能学报, 2022, 43(3):462-468.
LIU Yang, CHENG Qiang, SHI Yaowei, et al. Fault Diagnosis of Rolling Bearings Based on Attention Module and 1D-CNN[J]. Acta Energiae Solaris Sinica, 2022, 43(3):462-468.
[5]REN Zhijun, LIN Tantao, FENG Ke, et al. A Systematic Review on Imbalanced Learning Methods in Intelligent Fault Diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:3508535.
[6]ZHANG Da, MA Ming, XIA Likun. A Comprehensive Review on GANs for Time-series Signals[J]. Neural Computing and Applications, 2022, 34(5):3551-3571.
[7]杨光友, 刘浪, 习晨博. 自适应辅助分类器生成式对抗网络样本生成模型及轴承故障诊断[J]. 中国机械工程, 2022, 33(13):1613-1621.
YANG Guangyou, LIU Lang, XI Chenbo. Bearing Fault Diagnosis Based on SA-ACGAN Data Generation Model[J]. China Mechanical Engineering, 2022, 33(13):1613-1621.
[8]DIXIT S, VERMA N K, GHOSH A K. Intelligent Fault Diagnosis of Rotary Machines:Conditional Auxiliary Classifier GAN Coupled with Meta Learning Using Limited Data[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:3517811.
[9]TONG Qingbin, LU Feiyu, FENG Ziwei, et al. A Novel Method for Fault Diagnosis of Bearings with Small and Imbalanced Data Based on Generative Adversarial Networks[J]. Applied Sciences, 2022, 12(14):7346.
[10]WANG Haoyu, LI Peng, LANG Xun, et al. FTGAN:a Novel GAN-based Data Augmentation Method Coupled Time-frequency Domain for Imbalanced Bearing Fault Diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:3502614.
[11]李大广. 基于1D-DCNN与CNN-LSTM的车轴疲劳裂纹声发射信号试验数据分析[D]. 大连:大连交通大学, 2023.
LI Daguang. Experimental Data Analysis of Acoustic Emission Signals of Axle Fatigue Cracks Based on 1D-DCNN and CNN-LSTM[D].Dalian:Dalian Jiaotong University, 2023.
[12]GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11):139-144.
[13]ODENA A, OLAH C, SHLENS J. Conditional Image Synthesis with Auxiliary Classifier GANs[C]∥Proceedings of the 34th International Conference on Machine Learning. Sydney, 2017:2642-2651.
[14]孙灿飞, 王友仁, 夏裕彬. 基于SCAE-ACGAN的直升机行星齿轮裂纹故障诊断[J]. 振动·测试与诊断, 2021, 41(3):495-502.
SUN Canfei, WANG Youren, XIA Yubin. Fault Diagnosis of Helicopter Planetary Gear Tooth Crack Based on SCAE-ACGAN[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(3):495-502.
[15]FU Zhaoyang, LIU Zheng, PING Shuangrui, et al. TRA-ACGAN:a Motor Bearing Fault Diagnosis Model Based on an Auxiliary Classifier Generative Adversarial Network and Transformer Network[J]. ISA Transactions, 2024, 149:381-393.
[16]ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein Generative Adversarial Networks[C]∥Proceedings of the 34th International Conference on Machine Learning. Sydney, 2017:214-223.
[17]GRETTON A, BORGWARDT K M, RASCH M J, et al. A Kernel Two-sample Test[J]. Journal of Machine Learning Research, 2012, 13:723-773.
[18]ESTEBAN C, HYLAND S L, RA¨TSCH G. Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs[J]. ArXiv e-Prints, 2017:arXiv:1706.02633.
[19]YIN Wenzhe, XIA Hong, HUANG Xueying, et al. A Fault Diagnosis Method for Nuclear Power Plants Rotating Machinery Based on Deep Learning under Imbalanced Samples[J]. Annals of Nuclear Energy, 2024, 199:110340.
[20]WANG Hongxing, ZHU Hua, LI Huafeng. Multi-mode Data Generation and Fault Diagnosis of Bearings Based on STFT-SACGAN[J]. Electronics, 2023, 12(8):1910.
|