[1]董绍江, 周存芳, 陈里里, 等. 基于判别性特征提取和双重域对齐的轴承跨域故障诊断[J]. 中国机械工程, 2023, 34(15):1856-1863.
DONG Shaojiang, ZHOU Cunfang, CHEN Lili, et al. Cross-domain Fault Diagnosis of Bearings Based on Discriminant Feature Extraction and Dual-domain Alignment[J]. China Mechanical Engineering, 2023, 34(15):1856-1863.
[2]张龙, 胡燕青, 赵丽娟, 等. 多通道信息融合与深度迁移学习的旋转机械故障诊断[J]. 中国机械工程, 2023, 34(8):966-975.
ZHANG Long, HU Yanqing, ZHAO Lijuan, et al. Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis[J]. China Mechanical Engineering, 2023, 34(8):966-975.
[3]ZHAO Wentao, ZHANG Chao, FAN Bin, et al. Research on Rolling Bearing Virtual-real Fusion Life Prediction with Digital Twin[J]. Mechanical Systems and Signal Processing, 2023, 198:110434.
[4]李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19):124-131.
LI Heng, ZHANG Qing, QIN Xianrong, et al. Fault Diagnosis Method for Rolling Bearings Based on Short-time Fourier Transform and Convolution Neural Network[J]. Journal of Vibration and Shock, 2018, 37(19):124-131.
[5]曹仕骏, 郑近德, 潘海洋, 等. 基于改进自适应经验傅里叶分解的滚动轴承故障诊断方法[J]. 振动与冲击, 2022, 41(15):287-299.
CAO Shijun, ZHENG Jinde, PAN Haiyang, et al. Enhanced Adaptive Empirical Fourier Decomposition Based Rolling Bearing Fault Diagnosis Method[J]. Journal of Vibration and Shock, 2022, 41(15):287-299.
[6]LI Tianfu, ZHAO Zhibin, SUN Chuang, et al. WaveletKernelNet:an Interpretable Deep Neural Network for Industrial Intelligent Diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(4):2302-2312.
[7]ZHU Jun, CHEN Nan, PENG Weiwen. Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4):3208-3216.
[8]HU Mantang, WANG Guofeng, MA Kaile, et al. Bearing Performance Degradation Assessment Based on Optimized EWT and CNN[J]. Measurement, 2021, 172:108868.
[9]陈仁祥, 黄鑫, 杨黎霞, 等. 基于卷积神经网络和离散小波变换的滚动轴承故障诊断[J]. 振动工程学报, 2018, 31(5):883-891.
CHEN Renxiang, HUANG Xin, YANG Lixia, et al. Rolling Bearing Fault Identification Based on Convolution Neural Network and Discrete Wavelet Transform[J]. Journal of Vibration Engineering, 2018, 31(5):883-891.
[10]ZHAO Dezun, WANG Tianyang, CHU Fulei. Deep Convolutional Neural Network Based Planet Bearing Fault Classification[J]. Computers in Industry, 2019, 107:59-66.
[11]黄姗姗, 李志农. 基于高密度小波变换的航空发动机滚动轴承故障诊断方法[J]. 轴承, 2023(2):19-25.
HUANG Shanshan, LI Zhinong. Fault Diagnosis Method for Aero-engine Rolling Bearings Based on High-density Wavelet Transform[J]. Bearing, 2023(2):19-25.
[12]李飞龙, 和伟辉, 刘立芳, 等. 结合CWT和LightweightNet的滚动轴承实时故障诊断方法[J]. 智能系统学报, 2023, 18(3):496-505.
LI Feilong, HE Weihui, LIU Lifang, et al. Real Time Fault Diagnosis Method of Rolling Bearing Based on CWT and LightweightNet[J]. CAAI Transactions on Intelligent Systems, 2023, 18(3):496-505.
[13]WANG Hui, XU Jiawen, SUN Chuang, et al. Intelligent Fault Diagnosis for Planetary Gearbox Using Time-frequency Representation and Deep Reinforcement Learning[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(2):985-998.
[14]LI Xiwei, LEI Yaguo, LI Xiang, et al. A Robust Wavelet-integrated Residual Network for Fault Diagnosis of Machines with Adversarial Training[C]∥2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM). Seattle, 2023:847-851.
[15]BORGHESANI P, HERWIG N, ANTONI J, et al. A Fourier-based Explanation of 1D-CNNs for Machine Condition Monitoring Applications[J]. Mechanical Systems and Signal Processing, 2023, 205:110865.
[16]YAN Ruqiang, SHANG Zuogang, XU Hong, et al. Wavelet Transform for Rotary Machine Fault Diagnosis:10 Years Revisited[J]. Mechanical Systems and Signal Processing, 2023, 200:110545.
[17]HUANG Gao, LIU Zhuang, PLEISS G, et al. Convolutional Networks with Dense Connectivity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12):8704-8716.
[18]HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep Residual Learning for Image Recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, 2016:770-778.
[19]WANG Bo, LI Zengcong, XU Ziyu, et al. Digital Twin Modeling for Structural Strength Monitoring via Transfer Learning-based Multi-source Data Fusion[J]. Mechanical Systems and Signal Processing, 2023, 200:110625.
[20]CHOLLET F. Xception:Deep Learning with Depthwise Separable Convolutions[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017:1800-1807.
[21]YIN Tao, LU Na, GUO Guangshuai, et al. Knowledge and Data Dual-driven Transfer Network for Industrial Robot Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2023, 182:109597.
[22]DUCHI J, HAZAN E, SINGER Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[J]. The Journal of Machine Learning Research,2011,12:2121-2159.
[23]XU Dongpo, ZHANG Shengdong, ZHANG Huisheng, et al. Convergence of the RMSProp Deep Learning Method with Penalty for Nonconvex Optimization[J]. Neural Networks, 2021, 139:17-23.
[24]丁汕汕, 陈仁文, 黄翊君, 等. 重参数化VGG网络在滚动轴承故障诊断中的应用研究[J]. 振动与冲击, 2023, 42(11):313-323.
DING Shanshan, CHEN Renwen, HUANG Yijun, et al. Application Study of Reparameterized VGG Network in Rolling Bearing Fault Diagnosis[J]. Journal of Vibration and Shock, 2023, 42(11):313-323.
[25]WU Xinya, PENG Zhike, REN Jishun, et al. Rub-impact Fault Diagnosis of Rotating Machinery Based on 1-D Convolutional Neural Networks[J]. IEEE Sensors Journal, 2020, 20(15):8349-8363.
[26]APPANA D K, PROSVIRIN A, KIM J M. Reliable Fault Diagnosis of Bearings with Varying Rotational Speeds Using Envelope Spectrum and Convolution Neural Networks[J]. Soft Computing, 2018, 22(20):6719-6729.
[27]ZHANG Wei, PENG Gaoliang, LI Chuanhao, et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-noise and Domain Adaptation Ability on Raw Vibration Signals[J]. Sensors, 2017, 17(2):425.
[28]CHEN X, ZHANG B, GAO D. Bearing Fault Diagnosis Base on Multi-scale CNN and LSTM Model[J]. Journal of Intelligent Manufacturing, 2021, 32:971-987.
|