中国机械工程 ›› 2024, Vol. 35 ›› Issue (03): 427-437.DOI: 10.3969/j.issn.1004-132X.2024.03.005

• 机械基础工程 • 上一篇    下一篇

隧道环境内无人驾驶车辆目标-决策两级信息融合感知策略

王茂森;鲍久圣;谢厚抗;刘同冈;阴妍;章全利


  

  1. 中国矿业大学机电工程学院,徐州,221116

  • 出版日期:2024-03-25 发布日期:2024-04-22
  • 通讯作者: 鲍久圣(通信作者),男,1979年生,教授、博士研究生导师。研究方向为矿山智能运输与无人驾驶技术。E-mail:cumtbjs@cumt.edu.cn。
  • 作者简介:王茂森,男,1994年生,博士研究生。研究方向为无人驾驶技术。
  • 基金资助:
    江苏省科技成果转化专项资金(BA2023035);中央高校基本科研业务费专项资金(2022XSCX27);江苏高校优势学科建设工程项目(PAPD)

Research on Two-level Fusion Strategy of Unmanned Driving Perception Information Target-decision under Tunnel Environments

WANG Maosen;BAO Jiusheng;XIE Houkang;LIU Tonggang;YIN Yan;ZHANG Quanli   

  1. School of Mechanical and Electrical Engineering,China University of Mining and Technology,
    Xuzhou,Jiangsu,221116

  • Online:2024-03-25 Published:2024-04-22

摘要: 基于隧道内的特殊行驶环境和无人驾驶感知需求,选择合适的传感器及硬件搭建试验车辆,构建了毫米波雷达与摄像头多传感器融合的感知系统;基于YOLOv4目标级信息融合算法和改进D-S证据理论决策级信息融合算法,提出了一种“目标决策”两级信息融合策略;最后,在城市道路隧道环境内开展了感知信息两级融合验证试验,试验结果表明:相比单一的摄像头或毫米波雷达感知效果,基于摄像头与毫米波雷达传感器感知ROI区域关联实现的目标级融合结果可以提高9.51%的识别准确率,弥补了单一传感器在隧道环境内感知技术的不足;基于目标级融合感知结果,利用改进后的D-S证据理论算法再进行决策级融合,相比于单一的目标级融合结果,误检率降低了3.61%,显著提高了检测精度。采取多传感器感知信息目标决策两级融合策略能够满足隧道特殊环境内无人驾驶车辆可靠感知需求,为推动无人驾驶技术落地应用提供了理论与技术支撑。

关键词: 隧道环境, 无人驾驶, 多传感器融合, D-S证据理论, “目标决策”两级融合策略

Abstract: Based on the special driving environment in the tunnel and the perception requirements of unmanned driving, appropriate sensors and hardware were chosen to build a test vehicle and a perception system of multi-sensor fusion of millimeter-wave radar and camera. A two-level information fusion algorithm of “target-decision” was proposed based on YOLOv4 target-level information fusion algorithm and improved D-S evidence theory. Finally, a verification test of perception information two-level fusion was carried out in the urban road tunnel environments. The results show that in the tunnel environments, compared with the single camera or the millimeter-wave radar sensing results, the target-level fusion result based on the association of the camera and the millimeter-wave radar sensor to perceive the ROI area may improve the recognition accuracy by 9.51%, making up for the shortcomings of a single sensor in the tunnel environment perception technology. Based on the target-level fusion perception results, using the improved D-S evidence theory algorithm to perform decision-level fusion, compared with the single target-level fusion results, the false detection rate is reduced by 3.61%, which significantly improves detection accuracy. By adopting the multi-sensor sensing information target-decision-making two-level fusion strategy, it may meet the reliable sensing requirements of unmanned vehicles in the special tunnel environments, and provide theoretical and technical support for promoting the applications of unmanned controlled technology.

Key words: tunnel environment, unmanned driving technology, multi-sensor fusion, D-S evidence theory, “target-decision” two-level fusion strategy

中图分类号: