[1]吴雪, 宋晓茹, 高嵩, 等. 基于深度学习的目标检测算法综述[J]. 传感器与微系统, 2021, 40(2):4-7.
WU Xue, SONG Xiaoru, GAO Song,et al. Review of Target Detection Algorithms Based on Deep Learning[J]. Transducer and Microsystem Technologies, 2021, 40(2):4-7.
[2]鲍久圣, 张牧野, 葛世荣, 等. 基于改进A*和人工势场算法的无轨胶轮车井下无人驾驶路径规划[J]. 煤炭学报, 2022, 47(3):1347-1360.
BAO Jiusheng, ZHANG Muye, GE Shirong,et al. Underground Driverless Path Planning of Trackless Rubber Tyred Vehicle Based on Improved A* and Artificial Potential Field Algorithm[J]. Journal of China Coal Society, 2022, 47(3):1347-1360.
[3]张彩红. 城区环境下基于激光雷达的障碍物聚类和跟踪方法研究[D]. 合肥:中国科学技术大学, 2019.
ZHANG Caihong. Clustering and Tracking Method Research of Lidar-based Obstacle in Urban Environment[D].Hefei:University of Science and Technology of China, 2019.
[4]鲍久圣, 刘琴, 葛世荣, 等. 矿山运输装备智能化技术研究现状及发展趋势[J]. 智能矿山, 2020(1):78-88.
BAO Jiusheng, LIU Qin, GE Shirong, et al. Research Status and Development Trend of Intelligent Technologies for Mine Transportation Equipment[J]. Journal of Intelligent Mine, 2020(1):78-88.
[5]URMSON C, ANHALT J, BAGNELL D, et al. Autonomous Driving in Urban Environments:Boss and the Urban Challenge[J]. Journal of Field Robotics, 2008, 25(8):425-466.
[6]REDMON J, FARHADI A. YOLO9000:Better, Faster, Stronger[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017:6517-6525.
[7]REDMON J, FARHADI A. YOLOv3:an Incremental Improvement[EB/OL]. 2018:arXiv:1804.02767. http:∥arxiv.org/abs/1804.02767.pdf.
[8]BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4:Optimal Speed and Accuracy of Object Detection[EB/OL]. 2020:arXiv:2004.10934. http:∥arxiv.org/abs/2004.10934.pdf.
[9]李若熙, 吕潇, 张元生, 等. 改进YOLOv4算法井下人员检测的研究[J]. 矿业研究与开发, 2021, 41(11):179-185.
LI Ruoxi,LYU Xiao, ZHANG Yuansheng, et al. Research on Underground Personnel Detection Based on Improved YOLOv4 Algorithm[J]. Mining Research and Development, 2021, 41(11):179-185.
[10]陶倩文, 胡钊政, 蔡浩, 等. 车辆感知与定位研究——第29届国际智能车大会综述[J]. 交通信息与安全, 2019, 37(2):1-9.
TAO Qianwen, HU Zhaozheng, CAI Hao, et al. A Study of Vehicle Perception and Localization:an Overview of the 29th IEEE Intelligent Vehicles Symposium[J]. Journal of Transport Information and Safety, 2019, 37(2):1-9.
[11]MORGAN J, ODONNELL G E. Multi-sensor Process Analysis and Performance Characterisation in CNC Turning—a Cyber Physical System Approach[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1):855-868.
[12]谭逢友, 卢宏伟, 刘成俊, 等. 信息融合技术在机械故障诊断中的应用[J]. 重庆大学学报(自然科学版), 2006, 29(1):15-18.
TAN Fengyou, LU Hongwei, LIU Chengjun,et al. Research and Application of Information Fusion Technology on Machinery Fault Diagnosis[J]. Journal of Chongqing University, 2006, 29(1):15-18.
[13]田海雷, 李洪儒, 许葆华. 基于D-S证据理论和支持向量机的液压泵故障诊断技术[J]. 仪表技术与传感器, 2013(5):81-83.
TIAN Hailei, LI Hongru, XU Baohua. Fault Diagnosis of Hydraulic Pump Based on D-S Evidence Theory and SVM[J]. Instrument Technique and Sensor, 2013(5):81-83.
[14]YAGER R R. On the Dempster-shafer Framework and New Combination Rules[J]. Information Sciences, 1987, 41(2):93-137.
[15]谢苗苗, 李华龙. 基于改进D-S证据理论的室内环境控制决策系统[J]. 计算机工程与科学, 2020, 42(5):938-943.
XIE Miaomiao, LI Hualong. An Indoor Environment Control Decision-making System Based on Improved D-S Evidence Theory[J]. Computer Engineering & Science, 2020, 42(5):938-943.
[16]谢厚抗. 无人驾驶无轨胶轮车多传感信息融合与智能感知技术研究[D]. 徐州:中国矿业大学, 2021.
XIE Houkang. Research on Multi-sensor Information Fusion and Intelligent Sensing Technology for Driverless Trackless Rubber-tyred Vehicles[D].Xuzhou:China University of Mining and Technology, 2021.
[17]杨鑫, 刘威, 林辉. 面向高级辅助驾驶雷达和视觉传感器信息融合算法的研究[J]. 汽车实用技术, 2018(1):37-40.
YANG Xin, LIU Wei, LIN Hui. Research of Radar and Vision Sensors Data Fusion Algorithm Applied in Advanced Driver-assistance Systems[J]. Automobile Applied Technology, 2018(1):37-40.
[18]马春黎, 张大鹏. 无人驾驶汽车中环境感知的相关技术综述及专利分析[J]. 科学技术创新, 2020(15):7-9.
MA Chunli, ZHANG Dapeng. Overview and Patent Analysis of Related Technologies of Environmental Awareness in Driverless Cars[J]. Scientific and Technological Innovation, 2020(15):7-9.
[19]赵万里. 基于雷达的智能车多目标检测与跟踪技术研究[D]. 长沙:中南大学, 2011.
ZHAO Wanli. Technology Research of the Multi-objective Detection and Tracking for Intelligent Vehicle Based on Radars[D].Changsha:Central South University, 2011.
[20]姜延吉. 多传感器数据融合关键技术研究[D]. 哈尔滨:哈尔滨工程大学, 2010.
JIANG Yanji. Research on Key Technologies of Multi-sensor Data Fusion[D].Harbin:Harbin Engineering University, 2010.
[21]余宇. 低光照条件下基于单目视觉的车辆主动安全技术研究[D]. 成都:电子科技大学, 2013.
YU Yu. Research on Vehicle Active Safety Technology Based on Monocular Vision under Low Light Conditions[D]. Chengdu:University of Electronic Science and Technology, 2013.
[22]张铮, 王艳平, 薛桂香. 数字图像处理与机器视觉:Visual C++与Matlab实现[M]. 北京:人民邮电出版社, 2010:148-171.
ZHANG Zheng, WANG Yanping, XUE Guixiang. Digital Image Processing and Machine Vision:Realization with Visual C++ and Matlab[M]. Beijing:Posts & Telecom Press, 2010:148-171.
[23]杨帆, 郭建华, 谭海, 等. 不同距离测度的SIFT特征描述符相似性度量比较[J]. 遥感信息, 2017, 32(1):104-108.
YANG Fan, GUO Jianhua, TAN Hai, et al. Comparison of Similarity Measurement of SIFT Feature Descriptor Based on Different Distance Measures[J]. Remote Sensing Information, 2017, 32(1):104-108.
[24]吴俊, 柯飂挺, 任佳. 参数自动优化的特征选择融合算法[J]. 计算机系统应用, 2020, 29(7):145-151.
WU Jun, KE Liuting, REN Jia. Parameter Automatic Optimization for Feature Selection Fusion Algorithm[J]. Computer Systems & Applications, 2020, 29(7):145-151.
[25]陈虹颖.隧道环境下行人目标视频检测技术研究[D]. 重庆:重庆大学,2013.
CHEN Hongying. Research on Video Detection Technology of Pedestrian Target in Tunnel Environment[D]. Chongqing:Chongqing University, 2013.
[26]宋伟杰. 基于毫米波雷达与机器视觉融合的车辆检测技术研究[D]. 合肥:合肥工业大学, 2020.
SONG Weijie. Research on Vehicle Detection Technology Based on Millimeter Wave Radar and Machine Vision Fusion[D].Hefei:Hefei University of Technology, 2020.
[27]金立生, 程蕾, 成波. 基于毫米波雷达和机器视觉的夜间前方车辆检测[J]. 汽车安全与节能学报, 2016, 7(2):167-174.
JIN Lisheng, CHENG Lei, CHENG Bo.Leading Vehicle Detection at Night Based on Millimeter-wave Radar and Machine Vision[J]. Journal of Automotive Safety and Energy, 2016, 7(2):167-174.
|