中国机械工程 ›› 2025, Vol. 36 ›› Issue (8): 1774-1783.DOI: 10.3969/j.issn.1004-132X.2025.08.013
• 智能制造 • 上一篇
收稿日期:
2024-07-17
出版日期:
2025-08-25
发布日期:
2025-09-18
作者简介:
葛红玉*,女,1982年生,副教授、博士。研究方向为智能制造装备可靠性。E-mail: gxy-xkd@xust.edu.cn。
基金资助:
Hongyu GE(), Zhan ZHAO, Anxiang GUO, Jiarui SUN
Received:
2024-07-17
Online:
2025-08-25
Published:
2025-09-18
摘要:
为了判断并量化元动作单元故障诊断的难度,提出一种元动作单元的故障可诊断性评价方法。利用减法平均优化算法(SABO)优化的变分模态分解(VMD)对元动作单元的故障信号进行分解,利用峭度准则筛选IMF分量,构建基于包络熵的元动作单元特征向量;以余弦距离作为相似性度量指标,将故障可诊断性定量评价问题转换为不同故障模式下振动信号特征向量的相似性度量问题;构建元动作单元故障可诊断性评价矩阵,从而建立元动作单元的故障可诊断性评价指标。最后以蜗轮元动作单元为例进行实验验证分析,结果表明所提方法能够实现元动作单元不同故障模式的可诊断性的定量评价。
中图分类号:
葛红玉, 赵展, 郭安祥, 孙佳瑞. 基于SABO-VMD的数控机床元动作单元故障可诊断性评价[J]. 中国机械工程, 2025, 36(8): 1774-1783.
Hongyu GE, Zhan ZHAO, Anxiang GUO, Jiarui SUN. Fault Diagnosability Evaluation of Meta Actuation Units Based on SABO-VMD[J]. China Mechanical Engineering, 2025, 36(8): 1774-1783.
故障状态编号 | 故障状态名称 |
---|---|
t0 | 正常 |
t1 | 联轴器内接触面磨损 |
t2 | 梅花星形弹性键形变 |
t3 | 平键表面磨损 |
t4 | 平键定位孔磨损 |
t5 | 轴承装配间隙过大 |
t6 | 轴承润滑不良 |
t7 | 蜗杆轴线偏移 |
表1 蜗杆元动作单元故障模式
Tab. 1 Worm gear meta actuation unit fault mode
故障状态编号 | 故障状态名称 |
---|---|
t0 | 正常 |
t1 | 联轴器内接触面磨损 |
t2 | 梅花星形弹性键形变 |
t3 | 平键表面磨损 |
t4 | 平键定位孔磨损 |
t5 | 轴承装配间隙过大 |
t6 | 轴承润滑不良 |
t7 | 蜗杆轴线偏移 |
模态分量 | IMF1 | IMF2 | IMF3 | IMF4 |
---|---|---|---|---|
局部最小包络熵 | 7.5455 | 7.0693 | 6.4656 | 6.4808 |
峭度值 | 4.778 | 3.6927 | 3.2509 | 3.9918 |
相关系数 | 0.718 | 0.413 | 0.284 | 0.528 |
表2 局部最小包络熵、峭度值及相关系数
Tab. 2 Local minimum envelope entropy,kurtosis and correlation coefficients
模态分量 | IMF1 | IMF2 | IMF3 | IMF4 |
---|---|---|---|---|
局部最小包络熵 | 7.5455 | 7.0693 | 6.4656 | 6.4808 |
峭度值 | 4.778 | 3.6927 | 3.2509 | 3.9918 |
相关系数 | 0.718 | 0.413 | 0.284 | 0.528 |
编号 | 故障类型 | 最佳参数(k,α) |
---|---|---|
t0 | 正常 | (5,1716) |
t1 | 联轴器内接触面磨损 | (7,2115) |
t2 | 梅花星形弹性键形变 | (3,258) |
t3 | 平键表面磨损 | (7,2312) |
t4 | 平键定位孔磨损 | (8,1895) |
t5 | 轴承装配间隙过大 | (6,1058) |
t6 | 轴承润滑不良 | (9,1127) |
t7 | 蜗杆轴线偏移 | (4,864) |
表3 实验数据类型
Tab. 3 Types of experimental data
编号 | 故障类型 | 最佳参数(k,α) |
---|---|---|
t0 | 正常 | (5,1716) |
t1 | 联轴器内接触面磨损 | (7,2115) |
t2 | 梅花星形弹性键形变 | (3,258) |
t3 | 平键表面磨损 | (7,2312) |
t4 | 平键定位孔磨损 | (8,1895) |
t5 | 轴承装配间隙过大 | (6,1058) |
t6 | 轴承润滑不良 | (9,1127) |
t7 | 蜗杆轴线偏移 | (4,864) |
[1] | 王大轶, 符方舟, 刘成瑞, 等. 控制系统可诊断性的内涵与研究综述[J]. 自动化学报, 2018, 44(9): 1537-1553. |
WANG Dayi, FU Fangzhou, LIU Chengrui, et al. Connotation and Research Status of Diagnosability of Control Systems: a Review[J]. Acta Automatica Sinica, 2018, 44(9): 1537-1553. | |
[2] | 张根保, 张恒, 范秀君, 等. 数控机床基于FMA的功能分解与可靠性分析[J]. 机械科学与技术, 2012, 31(4): 528-533. |
ZHANG Genbao, ZHANG Heng, FAN Xiujun, et al. Function Decomposition and Reliability Analysis of CNC Machine Using Function-motion-action[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(4): 528-533. | |
[3] | LIN Lixiong, WANG Qing, HE Bingwei, et al. Evaluation of Fault Diagnosability for Nonlinear Uncertain Systems with Multiple Faults Occurring Simultaneously[J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 634-646. |
[4] | ZHAO Dong, AHN C K, PASZKE W, et al. Fault Diagnosability Analysis of Two-dimensional Linear Discrete Systems[J]. IEEE Transactions on Automatic Control, 2021, 66(2): 826-832. |
[5] | VERDIÈRE N, JAUBERTHIE C, TRAVÉ-MASSUYÈS L. Functional Diagnosability and Detectability of Nonlinear Models Based on Analytical Redundancy Relations[J]. Journal of Process Control, 2015, 35: 1-10. |
[6] | TERMECHE A, BENAZZOUZ D, BOUAMAMA B O, et al. Augmented Analytical Redundancy Relations to Improve the Fault Isolation[J]. Mechatronics, 2018, 55: 129-140. |
[7] | CABRAL F G, MOREIRA M V. Synchronous Diagnosis of Discrete-event Systems[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(2): 921-932. |
[8] | JIANG Dongnian, LI Wei. Multi-objective Optimal Placement of Sensors Based on Quantitative Evaluation of Fault Diagnosability[J]. IEEE Access, 2019, 7: 117850-117860. |
[9] | FU Fangzhou, WANG Dayi. A Method for Quantitative Fault Diagnosability Analysis of Systems with Probabilistic Sensor Faults[J]. International Journal of Control, Automation and Systems, 2019, 17(8): 2159-2164. |
[10] | FU Fangzhou, WANG Dayi, LI Linlin, et al. Data-driven Method for the Quantitative Fault Diagnosability Analysis of Dynamic Systems[J]. IET Control Theory & Applications, 2019, 13(8): 1197-1203. |
[11] | FU Fangzhou, WANG Dayi, LI Wenbo, et al. Data-driven Fault Identifiability Analysis for Discrete-time Dynamic Systems[J]. International Journal of Systems Science, 2020, 51(2): 404-412. |
[12] | FU Fangzhou, XUE Ting, WU Zhigang, et al. A Fault Diagnosability Evaluation Method for Dynamic Systems without Distribution Knowledge[J]. IEEE Transactions on Cybernetics, 2020, 52(6): 5113-5123. |
[13] | 彭珍瑞, 刘臻. 基于故障可诊断性的齿轮箱传感器优化布置[J]. 振动与冲击, 2021, 40(4): 155-163. |
PENG Zhenrui, LIU Zhen. Optimal Sensor Placement of a Gear Box Based on Fault Diagnosability[J]. Journal of Vibration and Shock, 2021, 40(4): 155-163. | |
[14] | XUE Yajuan, CAO Junxing, WANG Daxing, et al. Application of the Variational-mode Decomposition for Seismic Time–Frequency Analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3821-3831. |
[15] | ZHANG Yaping, QI Xiaozhi, WANG Tao, et al. Tool Wear Condition Monitoring Method Based on Deep Learning with Force Signals[J]. Sensors, 2023, 23(10): 4595. |
[16] | XIE Zhijie, YU Di, ZHAN Changshu, et al. Ball Screw Fault Diagnosis Based on Continuous Wavelet Transform and Two-dimensional Convolution Neural Network[J]. Measurement and Control, 2023, 56(3/4): 518-528. |
[17] | LEE W G, LEE J W, HONG M S, et al. Failure Diagnosis System for a Ball-screw by Using Vibration Signals[J]. Shock and Vibration, 2015, 2015(1): 435870. |
[18] | ZHENG Jinde, SU Miaoxian, YING Wanming, et al. Improved Uniform Phase Empirical Mode Decomposition and Its Application in Machinery Fault Diagnosis[J]. Measurement, 2021, 179: 109425. |
[19] | FENG Zhipeng, ZHANG Dong, ZUO M J. Adaptive Mode Decomposition Methods and Their Applications in Signal Analysis for Machinery Fault Diagnosis: a Review with Examples[J]. IEEE Access, 2017, 5: 24301-24331. |
[20] | ZHENG Jinde. Rolling Bearing Fault Diagnosis Based on Partially Ensemble Empirical Mode Decomposition and Variable Predictive Model-based Class Discrimination[J]. Archives of Civil and Mechanical Engineering, 2016, 16(4): 784-794. |
[21] | ZHAO Huimin, LIU Hailong, XU Junjie, et al. Research on a Fault Diagnosis Method of Rolling Bearings Using Variation Mode Decomposition and Deep Belief Network[J]. Journal of Mechanical Science and Technology, 2019, 33(9): 4165-4172. |
[22] | DRAGOMIRETSKIY K, ZOSSO D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
[23] | ZHANG Xin, ZHAO Jianmin. Compound Fault Detection in Gearbox Based on Time Synchronous Resample and Adaptive Variational Mode Decomposition[J]. Eksploatacja I Niezawodność—Maintenance and Reliability, 2020, 22(1): 161-169. |
[24] | YI Yingmin, TIAN Ge. Feature Extraction Method of Ship Radiated Noise Based on BOA-VMD and Slope Entropy[J]. Frontiers in Physics, 2022, 10: 1043070. |
[25] | ZHANG Yu, WU Yuhu, LI Lianmin, et al. A Hybrid Energy Storage System Strategy for Smoothing Photovoltaic Power Fluctuation Based on Improved HHO-VMD[J]. International Journal of Photoenergy, 2023, 2023(1): 9633843. |
[26] | 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81. |
TANG Guiji, WANG Xiaolong. Parameter Optimized Variational Mode Decomposition Method with Application to Incipient Fault Diagnosis of Rolling Bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-81. | |
[27] | ZHANG Ying, WANG Anchen. Research on the Fault Diagnosis Method for Rolling Bearings Based on Improved VMD and Automatic IMF Acquisition[J]. Shock and Vibration, 2020, 2020: 6216903. |
[28] | 杨岗, 邓琴, 卫昱乾, 等. 模态特征分量(IMF)在轴承故障诊断中的选用原则综述[J]. 铁道车辆, 2023, 61(6): 7-15. |
YANG Gang, DENG Qin, WEI Yuqian, et al. Review of the Principle of Selecting the Intrinsic Mode Functions (IMF) in the Bearing Fault Diagnosis[J]. Rolling Stock, 2023, 61(6): 7-15. | |
[29] | TROJOVSKÝ P, DEHGHANI M. Subtraction-average-based Optimizer: a New Swarm-inspired Metaheuristic Algorithm for Solving Optimization Problems[J]. Biomimetics, 2023, 8(2): 149. |
[30] | 来凌红, 吴虎胜, 吕建新, 等. 基于EMD和样本熵的滚动轴承故障SVM识别[J]. 煤矿机械, 2011, 32(1): 249-252. |
LAI Linghong, WU Husheng, JianxinLYU, et al. SVM Recognition Method Based on EMD and Sample Entropy in Rolling Bearing Fault Diagnosis[J]. Coal Mine Machinery, 2011, 32(1): 249-252. |
[1] | 王治超1, 刘超1, 冉琰2, 陈一凡3, 蒋东翔1, 张根保2, 3. 考虑分布和传递模型的机械系统可靠性分配方法[J]. 中国机械工程, 2025, 36(06): 1143-1150. |
[2] | 滕佳篷, 武国启. 基于SOA-VMD-ICA的海水泵激励源特征提取方法[J]. 中国机械工程, 2024, 35(08): 1373-1380. |
[3] | 王秋莲1, 欧桂雄1, 徐雪娇1, 刘锦荣1, 马国红2, 邓红标2. 基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究[J]. 中国机械工程, 2024, 35(06): 1052-1063. |
[4] | 李健, 张根保, 冉琰, 王勇勤. 基于自由度约束的元动作单元误差传递路径识别方法[J]. 中国机械工程, 2023, 34(02): 135-141. |
[5] | 王友仁;王俊;黄海安. 基于非线性短时傅里叶变换阶次跟踪的变速行星齿轮箱故障诊断[J]. 中国机械工程, 2018, 29(14): 1688-1695. |
[6] | 姚家驰1,2;向阳1,2;钱思冲1,2;张冠军1,2. 基于变分模态分解和鲁棒性独立成分分析的内燃机缸盖振动信号分离[J]. 中国机械工程, 2018, 29(08): 923-929,936. |
[7] | 马洪斌;佟庆彬;张亚男. 优化参数的变分模态分解在滚动轴承故障诊断中的应用[J]. 中国机械工程, 2018, 29(04): 390-397. |
[8] | 姚成玉1;来博文1;陈东宁2,3;孙飞2,3;吕世君2,3. 基于最小熵解卷积-变分模态分解和优化支持向量机的滚动轴承故障诊断方法[J]. 中国机械工程, 2017, 28(24): 3001-3012. |
[9] | 姜万录, 王浩楠, 朱勇, 王振威, 董克岩, . 变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法[J]. 中国机械工程, 2017, 28(10): 1215-1220,1226. |
[10] | 杨宇, 罗鹏, 程军圣. 广义变分模态分解及其在齿轮箱复合故障诊断中的应用[J]. 中国机械工程, 2017, 28(09): 1069-1073. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||