中国机械工程 ›› 2025, Vol. 36 ›› Issue (06): 1261-1268.DOI: 10.3969/j.issn.1004-132X.2025.06.013

• 智能制造 • 上一篇    下一篇

基于多源信息融合和集成学习的薄壁件铣削加工变形误差预测

尹佳1;郑健2;刘尧3*;贾保国1;段晓蕊1   

  1. 1.中航西安飞机工业集团股份有限公司,西安,710089
    2.西安电子科技大学机电工程学院,西安,710071
    3.西安邮电大学通信与信息工程学院,西安,710121

  • 出版日期:2025-06-25 发布日期:2025-08-04
  • 作者简介:尹佳,男,1981年生,研究员级高级工程师。研究方向为航空制造技术。
  • 基金资助:
    陕西省科技重大专项(2019zdzx01-01-02)

Thin-walled Workpiece Milling Deformation Error Prediction Based on Multi-source Information Fusion and Ensemble Learning

YIN Jia1;ZHENG Jian2;LIU Yao3*;JIA Baoguo1;DUAN Xiaorui1   

  1. 1.AVIC Xian Aircraft Industry Group Company Ltd.,Xian,710089
    2.School of Mechano-Electronic Engineering,Xidian University,Xian,710071
    3.School of Communications and Information Engineering,Xian University of Posts and
    Telecommunications,Xian,710121

  • Online:2025-06-25 Published:2025-08-04

摘要: 在实际加工过程中,薄壁件加工精度易受到切削力、强迫振动、颤振、工件几何特征、材料等因素影响,导致薄壁件变形难以预测和控制。提出了一种多源信息融合的薄壁件铣削加工变形误差预测方法,融合加工过程信息和振动信号等数据,基于Stacking集成学习思想构建薄壁件铣削加工变形误差预测模型,并进行了实验验证。对比实验表明,相比于常规数据驱动方法,所构建模型的鲁棒性和准确度更高,实用性更好。

关键词: 薄壁件, 铣削加工, 变形误差, 多源信息融合, 集成学习

Abstract: In practical machining processes, the dimensional accuracy of thin-walled workpiece was significantly affected by multiple factors including cutting forces, forced vibrations, chatter phenomena, geometric characteristics of workpiece and material properties, rendering deformation prediction and control particularly challenging. A multi-source information fusion method for deformation error prediction in thin-walled workpiece milling processes was developed. Machining parameters, vibration signals, and other relevant data were integrated to establish a deformation error prediction model through Stacking ensemble learning methodology, with comprehensive experimental validation performed. Comparative analyses reveal that the constructed model demonstrates superior robustness, higher accuracy, and enhanced practicality when compared with conventional data-driven prediction methods.

Key words: thin-walled workpiece, milling process, deformation error, multi-source information fusion, ensemble learning

中图分类号: