[1]岳彩旭, 张俊涛, 刘献礼,等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4):106-131.
YUE Caixu, ZHANG Juntao, LIU Xianli, et al. Research Progress on Machining Deformation during Milling of Thin-walled Parts[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(4):106-131.
[2]刘醒彦. 基于变形力监测数据的航空结构件加工变形预测与控制方法[D]. 南京:南京航空航天大学, 2020.
LIU Xingyan. Machining Deformation Prediction and Control of Aerospace Structural Parts Based on Deformation Force Monitor Data[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
[3]YI J, WANG X B, JIAO L, et al. Research on Deformation Law and Mechanism for Milling Micro Thin Wall with Mixed Boundaries of Titanium Alloy in Mesoscale[J]. Thin-walled Structures, 2019, 144:106329.
[4]李曦, 袁军堂, 汪振华,等. 基于Rayleigh-Ritz法的钛合金薄壁件非均匀余量加工变形控制研究[J]. 中国机械工程, 2020, 31(11):1378-1385.
LI Xi, YUAN Juntang, WANG Zhenhua, et al. Study on Deformation Control of Thin-walled Titanium Alloy Parts in Non-uniform Allowance Machining Based on Rayleigh-Ritz Method[J]. China Mechanical Engineering, 2020, 31(11):1378-1385.
[5]YUE C X, CHEN Z T, LIANG S Y, et al. Modeling Machining Errors for Thin-walled Parts According to Chip Thickness[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(14):91-100.
[6]SUN H, ZHAO S Q, PENG F Y, et al. In-situ prediction of Machining Errors of Thin-walled Parts:an Engineering Knowledge Based Sparse Bayesian Learning Approach[J]. Journal of Intelligent Manufacturing, 2024, 35(1):387-411.
[7]王骏腾. 薄壁件铣削残余应力变形的感知预测与工艺优化方法[D].西安:西北工业大学, 2018.
WANG Junteng. Research on Prediction and Optimization Method of Deformation Induced by Residual Stresses in Milling of Thin-walledParts[D]. Xian:Northwestern Polytechnical University, 2018.
[8]GE G Y, DU Z C, YANG J G. Rapid Prediction and Compensation Method of Cutting Force-induced Error for Thin-walled Workpiece[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(11/12):5453-5462.
[9]朱卫华, 王宗园, 任军学,等. TC4钛合金薄壁件铣削残余应力变形研究[J]. 组合机床与自动化加工技术, 2020 (12):70-72.
ZHU Weihua, WANG Zongyuan, REN Junxue, et al. Study on Milling Residual Stress and Deformation of TC4 Titanium Alloy Thin Plate Parts[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(12):70-72.
[10]ZHANG Z X, ZHANG Z, ZHANG D H, et al. Milling Distortion Prediction for Thin-walled Component Based on the Average MIRS in Specimen Machining[J]. International Journal of Advanced Manufacturing Technology, 2020, 111(11/12):3379-3392.
[11]LI B H, DENG H B, HUI D, et al. A Semi-analytical Model for Predicting the Machining Deformation of Thin-walled Parts Considering Machining-induced and Blank Initial Residual Stress[J]. International Journal of Advanced Manufacturing Technology, 2020, 110(1/2):139-161.
[12]CHEN Z T, YUE C X, LIANG S Y, et al. Iterative from Error Prediction for Side-milling of Thin-walled Parts[J]. International Journal of Advanced Manufacturing Technology, 2020, 107(9/10):4173-4189.
[13]SHI D M, HUANG T, ZHANG X M, et al. An Explicit Coupling Model for Accurate Prediction of Force-induced Deflection in Thin-walled Workpiece Milling[J]. Journal of Manufacturing Science and Engineering—Transactions of the ASME, 2022, 144(8):081005.
[14]丛靖梅, 莫蓉, 吴宝海,等. 薄壁件残余应力变形仿真预测与切削参数优化[J]. 机械科学与技术, 2019, 38(2):205-210.
CONG Jingmei, MO Rong, WU Baohai, et al. Prediction of Deformation Induced by Residual Stress in Milling of Thin-walled Part and Optimization of Cutting Parameters[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(2):205-210.
[15]田海东. 铝合金薄壁结构件铣削变形预测与工艺参数优化[D]. 济南:山东大学, 2020.
TIAN Haidong. Prediction of Milling Deformation and Optimization of Process Parameters of Aluminum Alloy Thin-walled StructuralParts[D]. Jinan:Shandong University, 2020.
[16]WHITEHOUSE D. Surfaces—a Link between Manufacture and Function[J]. Proceedings of the Institution of Mechanical Engineers, 1978, 192(1):179-188.
[17]张智, 刘成颖, 刘辛军,等. 采用小波包能量熵的铣削振动状态分析方法研究[J]. 机械工程学报, 2018, 54(21):57-62.
ZHANG Zhi, LIU Chengying, LIU Xinjun, et al. Analysis of Milling Vibration State Based on the Energy Entropy of WPD[J]. Chinese Journal of Mechanical Engineering, 2018, 54(21):57-62.
|