中国机械工程 ›› 2025, Vol. 36 ›› Issue (11): 2678-2684.DOI: 10.3969/j.issn.1004-132X.2025.11.025

• 智能制造 • 上一篇    

新型刚柔混联连续体机器人运动建模

董佳祥1(), 刘铨权2,3(), 胡希平2, 赵学智1   

  1. 1.华南理工大学机械与汽车工程学院, 广州, 510641
    2.深圳北理莫斯科大学人工智能研究院&粤港澳联合实验室, 深圳, 518172
    3.深圳大学第一附属医院神经内科, 深圳, 518035
  • 收稿日期:2024-10-23 出版日期:2025-11-25 发布日期:2025-12-09
  • 通讯作者: 刘铨权
  • 作者简介:董佳祥,男,1997年生,博士研究生。研究方向为微创手术机器人创新设计与精准控制。E-mail: 202110183011@mail.scut.edu.cn
    刘铨权*(通信作者),男,1984年生,副教授。研究方向为智能机器人与系统集成、医疗机器人机构综合与控制。E-mail: quanquanliu@smbu.edu.cn
  • 基金资助:
    国家自然科学基金(61963007);广东省基础与应用基础研究基金(2023A1515012427);广东省基础与应用基础研究基金(2023A1515140026);深圳市科技计划(JCYJ20210324122200002);广东省医学科学技术研究基金(A2021169);广东省医学科学技术研究基金(B2023109);深圳市大鹏新区医疗健康集团医疗卫生科研项目(DPJTKY202306)

Kinematic Modeling of a Novel Rigid⁃Flexible Hybrid Continuum Robots

Jiaxiang DONG1(), Quanquan LIU2,3(), Xiping HU2, Xuezhi ZHAO1   

  1. 1.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou,510641
    2.Artificial Intelligence Research Institute & Guangdong-Hong Kong-Macao Joint Laboratory,Shenzhen MSU-BIT University,Shenzhen,Guangdong,518172
    3.Department of Neurology,The First Affiliated Hospital of Shenzhen University,Shenzhen,Guangdong,518035
  • Received:2024-10-23 Online:2025-11-25 Published:2025-12-09
  • Contact: Quanquan LIU

摘要:

针对一种新型软轴拉扭协同驱动的刚柔混联连续体机器人,开展了其运动建模研究。建立了基于分段恒曲率(PCC)并综合考虑多种载荷的运动静力学模型。为求解其高度非线性的逆运动学,构建了一种由牛顿-拉夫逊优化算法(NRBO)优化的反向传播(BP)神经网络模型(NRBO-BP模型)。实验结果表明,单/双段柔性体机器人末端弯曲角度平均误差分别为4.2°和7.1°;基于NRBO-BP模型的轨迹跟踪最大位置误差为2.5 mm,验证了所提方法的准确性与有效性。

关键词: 软轴, 连续体机器人, 运动静力学模型, 神经网络, 逆运动学

Abstract:

A study of the kinemetic modeling was carried out for a novel rigid-flexible hybrid continuum robot driven by tension-torsion synergistic actuation. A kinetostatic model was developed based on the piecewise constant curvature(PCC) framework, which comprehensively considered various loads. To solve the highly nonlinear inverse kinematics, a BP neural network model optimized by the Newton-Raphson based optimizer(NRBO), denoted as NRBO-BP model, was constructed. Experimental results show that the average bending angle errors at the end of the single/dual-segment flexible robots are as 4.2° and 7.1°, respectively. The maximum position error in trajectory tracking based on NRBO-BP model is as 2.5 mm, which verifies the accuracy and effectiveness of the proposed methods.

Key words: flexible shaft, continuum robot, kinetostatic model, neural network, inverse kinematics

中图分类号: