[1]黄云, 刘帅, 黄涛, 等. 钛合金材料砂带磨削表面残余应力形成模型及其实验研究[J]. 表面技术, 2020, 49(4):30-37.
HUANG Yun, LIU Shuai, HUANG Tao, et al. Model of Residual Stress Formation on Belt Grinding Surface of Titanium Alloy and Experimental Research[J]. Surface Technology, 2020, 49(4):30-37.
[2]王军利, 陆正午, 李庆庆, 等. 基于热分析的双螺杆压缩机转子的应力疲劳研究[J]. 机械强度, 2021, 43(4):928-935.
WANG Junli, LU Zhengwu, LI Qingqing, et al. Research on Stress Fatigue of Twin Screw Compressor Rotor Based on Thermal Analysis[J]. Journal of Mechanical Strength, 2021, 43(4):928-935.
[3]路恩会, 刘坚, 王卫芳, 等. 粗糙度关联的图像特征指标性能评价方法研究[J]. 仪器仪表学报, 2017, 38(8):2022-2029.
LU Enhui, LIU Jian, WANG Weifang, et al. Study on the Performance Assessment Method of Image Indices Associated with Roughness[J]. Chinese Journal of Scientific Instrument, 2017, 38(8):2022-2029.
[4]杨赫然, 孙兴伟, 戚朋, 等. 基于改进BP神经网络的螺杆转子铣削表面粗糙度预测[J]. 电子测量与仪器学报, 2022, 36(10):189-196.
YANG Heran, SUN Xingwei, QI Peng, et al. Roughness Prediction of Spiral Surface Milling Based on Improved BP Neural Network[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(10):189-196.
[5]韩晓芹, 宋永锋, 刘雨, 等. 基于超声无损评价的表面粗糙度测量方法[J]. 中国机械工程, 2019, 30(8):883-889.
HAN Xiaoqin, SONG Yongfeng, LIU Yu, et al. A Surface Roughness Measurement Method Based on Ultrasonic Nondestructive Evaluations[J]. China Mechanical Engineering, 2019, 30(8):883-889.
[6]袁尚勇, 陈根余, 戴隆州, 等. 电火花机械磨削修整粗粒度成形砂轮试验研究[J]. 中国机械工程, 2023, 34(10):1164-1171.
YUAN Shangyong, CHEN Genyu, DAI Longzhou, et al. Experimental Research of Coarse-grained Forming Grinding Wheel Dressed by EDDG[J]. China Mechanical Engineering, 2023, 34(10):1164-1171.
[7]时强胜, 张小俭, 陈巍, 等. 基于灰色关联度分析-响应面法的橡胶软模端面抛磨表面粗糙度预测[J]. 中国机械工程, 2021, 32(24):2967-2974.
SHI Qiangsheng, ZHANG Xiaojian, CHEN Wei, et al. Prediction of Surface Roughness of Rubber Soft Die End Face Polishing Based on GRA-RSM[J]. China Mechanical Engineering, 2021, 32(24):2967-2974.
[8]徐哲壮, 黄平, 陈丹, 等. 融合机器视觉与邻近度估计的相似工业设备识别策略研究[J]. 仪器仪表学报, 2023, 44(1):283-290.
XU Zhezhuang, HUANG Ping, CHEN Dan, et al. Research on Similar Industrial Devices Recognition Strategy Based on Machine Vision and Proximity Estimation[J]. Chinese Journal of Scientific Instrument, 2023, 44(1):283-290.
[9]李聪波, 龙云, 崔佳斌, 等. 基于多源异构数据的数控铣削表面粗糙度预测方法[J]. 中国机械工程, 2022, 33(3):318-328.
LI Congbo, LONG Yun, CUI Jiabin, et al. Surface Roughness Prediction Method of CNC Milling Based on Multi-source Heterogeneous Data[J]. China Mechanical Engineering, 2022, 33(3):318-328.
[10]刘桂雄, 廖普, 杨宁祥. 基于深度学习主动视觉压力容器焊缝质量参数检测方法[J]. 仪器仪表学报, 2023, 44(5):1-9.
LIU Guixiong, LIAO Pu, YANG Ningxiang. Active Vision Pressure Vessel Weld Quality Parameter Detection Method Based on Deep Learning[J]. Chinese Journal of Scientific Instrument, 2023, 44(5):1-9.
[11]LU Enhui, ZHANG Ruting, LIU Jian, et al. Observation of Ground Surface Roughness Values Obtained by Stylus Profilometer and White Light Interferometer for Common Metal Materials[J]. Surface and Interface Analysis, 2022, 54(6):587-599.
[12]KARTHIKEYAN S, SUBBARAYAN M R, MATHAN K P, et al. Computer Vision-based Surface Roughness Measurement Using Artificial Neural Network[J]. Materials Today:Proceedings, 2022, 60:1325-1328.
[13]XIA Chunyang, PAN Zengxi, POLDEN J, et al. Modelling and Prediction of Surface Roughness in Wire Arc Additive Manufacturing Using Machine Learning[J]. Journal of Intelligent Manufacturing, 2022, 33(5):1467-1482.
[14]LU Enhui, LIU Jian, GAO Rongyu, et al. Designing Indices to Measure Surface Roughness Based on the Color Distribution Statistical Matrix (CDSM)[J]. Tribology International, 2018, 122:96-107.
[15]LU Enhui, GUO Yaocun, ZHU Xinglong, et al. A New Grinding Surface Roughness Measurement Method Based on Image Quality Algorithm and BP Neural Network[J]. Surface Topography:Metrology and Properties, 2022, 10(4):045024.
[16]FISCHER A. Capabilities and Limits of Surface Roughness Measurements with Monochromatic Speckles[J]. Applied Optics, 2023, 62(14):3724.
[17]易怀安, 方润基, 舒爱华, 等. 小样本问题下的铣削表面粗糙度测量[J]. 激光与光电子学进展, 2022, 59(23):2324001.
YI Huaian, FANG Runji, SHU Aihua, et al. Milling Surface Roughness Measurement under Few-shot Problem[J]. Laser & Optoelectronics Progress, 2022, 59(23):2324001.
[18]LU Enhui, REN Wenxiang, DAI Hongqing, et al. Investigations on Electromagnetic Wave Scattering Simulation from Rough Surface:Some Instructions for Surface Roughness Measurement Based on Machine Vison[J]. Precision Engineering, 2023, 82:156-168.
[19]杨晨, 方红萍, 邹凌云, 等. 基于色彩均匀敏感度的磨削表面粗糙度测量[J]. 机电工程, 2021, 38(6):755-761.
YANG Chen, FANG Hongping, ZOU Lingyun, et al. Grinding Surface Roughness Measurement Based on Color Uniformity Sensitivity[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(6):755-761.
[20]CHEN Wei, ZOU Bin, ZHENG Qinbing, et al. Research on the Sustainable Measurement of Machined Surface Roughness under the Influence of Cutting Environment[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(9):4697-4711.
[21]HUANG Jiefeng, YI Huaian, SHU Aihua, et al. Visual Measurement of Grinding Surface Roughness Based on Feature Fusion[J]. Measurement Science and Technology, 2023, 34(10):105019.
[22]VASANTH K, ELANANGAI V, ARULANANTH T S, et al. Machine Learning Based Metal Surface Roughness Estimation in Infrared Images[J]. Materials Today:Proceedings, 2023:1-8. https://doi.org/10.1016/j.matpr.2023.03.394.
[23]FANG Runji, YI Huaian, WANG Shuai, et al. Classification and Inspection of Milling Surface Roughness Based on a Broad Learning System[J]. Metrology and Measurement Systems, 2022:483-503.
[24]SU Jinzhao, YI Huaian, LING Lin, et al. Multi-object Surface Roughness Grade Detection Based on Faster R-CNN[J]. Measurement Science and Technology, 2023, 34(1):015012.
[25]安倩楠. 基于加工表面显微图像的卷积神经网络粗糙度识别技术研究[D]. 西安:西安理工大学, 2019.
AN Qiannan. Research on Roughness Recognition Technology of Convolutional Neural Network Based on Microscopic Image of Machining Surface[D]. Xian:Xian University of Technology, 2019.
[26]陈丽. 基于特征提取和卷积神经网络的铣削表面粗糙度检测方法研究[D]. 武汉:华中科技大学, 2019.
CHEN Li. Research on Milling Surface Roughness Detection Method Based on Feature Extraction and Convolutional Neural Network[D]. Wuhan:Huazhong University of Science and Technology, 2019.
[27]陈仁祥, 詹赞, 胡小林, 等. 基于多注意力Faster RCNN的噪声干扰下印刷电路板缺陷检测[J]. 仪器仪表学报, 2021, 42(12):167-174.
CHEN Renxiang, ZHAN Zan, HU Xiaolin, et al. Printed Circuit Board Defect Detection Based on the Multi-attentive Faster RCNN under Noise Interference[J]. Chinese Journal of Scientific Instrument, 2021, 42(12):167-174.
[28]杨东儒, 魏建文, 林雄威, 等. 基于自注意力机制的深度学习模拟电路故障诊断[J]. 仪器仪表学报, 2023, 44(3):128-136.
YANG Dongru, WEI Jianwen, LIN Xiongwei, et al. A Fault Diagnosis Algorithm for Analog Circuits Based on Self-attention Mechanism Deep Learning[J]. Chinese Journal of Scientific Instrument, 2023, 44(3):128-136.
|