[1]WETTERGREEN D. Robotic Walking in Natural Terrain:Gait Planning and Behavior-based Control for Statically-stable Walking Robots[M]. Pittsburgh:Carnegie Mellon University, 1995.
[2]BJELONIC M, HOMBERGER T, KOTTEGE N, et al. Autonomous Navigation of Hexapod Robots with Vision-based Controller Adaptation[C]∥2017 IEEE International Conference on Robotics and Automation(ICRA). Singapore, 2017:5561-5568.
[3]BJELONIC M, KOTTEGE N, HOMBERGER T, et al. Weaver:Hexapod Robot for Autonomous Navigation on Unstructured Terrain[J]. Journal of Field Robotics, 2018, 35(7):1063-1079.
[4]PRGR M, CˇEK P, FAIGL J. Cost of Transport Estimation for Legged Robot Based on Terrain Features Inference from Aerial Scan[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Madrid, 2018:1745-1750.
[5]ZENKER S, AKSOY E E, GOLDSCHMIDT D, et al. Visual Terrain Classification for Selecting Energy Efficient Gaits of a Hexapod Robot[C]∥2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, 2013:577-584.
[6]朱雅光, 刘春潮, 张亮. 基于虚拟运动神经网络的六足机器人行为控制[J]. 浙江大学学报(工学版), 2022, 56(6):1107-1118.
ZHU Yaguang, LIU Chunchao, ZHANG Liang. Behavior Control of Hexapod Robot Based on Virtual Motoneuron Network[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(6):1107-1118.
[7]KESPER P, GRINKE E, HESSE F, et al. Obstacle/Gap Detection and Terrain Classification of Walking Robots Based on a 2D Laser Range Finder[C]∥Nature-Inspired Mobile Robotics. Shenzhen, 2013:419-426.
[8]ZHU Yaguang, ZHANG Liang, MANOONPONG P. Virtual Motoneuron Activation for Goal-directed Locomotion of a Hexapod Robot[C]∥2020 5th International Conference on Advanced Robotics and Mechatronics(ICARM). Shenzhen, 2020:380-386.
[9]FOCCHI M, del PRETE A, HAVOUTIS I, et al. High-slope Terrain Locomotion for Torque-controlled Quadruped Robots[J]. Autonomous Robots, 2017, 41(1):259-272.
[10]ZHU Yaguang, JIN Bo, LI Wei. Leg Compliance Control of a Hexapod Robot Based on Improved Adaptive Control in Different Environments[J]. Journal of Central South University, 2015, 22(3):904-913.
[11]XIONG Xiaofeng, WRGTTER F, MANOONPONG P. Adaptive and Energy Efficient Walking in a Hexapod Robot under Neuromechanical Control and Sensorimotor Learning[J]. IEEE Transactions on Cybernetics, 2016, 46(11):2521-2534.
[12]XIONG Xiaofeng, WRGTTER F, MANOONPONG P. Neuromechanical Control for Hexapedal Robot Walking on Challenging Surfaces and Surface Classification[J]. Robotics and Autonomous Systems, 2014, 62(12):1777-1789.
[13]HOMCHANTHANAKUL J, MANOONPONG P. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5):1833-1845.
[14]THOR M, MANOONPONG P. Versatile Modular Neural Locomotion Control with Fast Learning[J]. Nature Machine Intelligence, 2022, 4:169-179.
[15]MIRLETZ B T, BHANDAL P, ADAMS R D, et al. Goal-directed CPG-based Control for Tensegrity Spines with Many Degrees of Freedom Traversing Irregular Terrain[J]. Soft Robotics, 2015, 2(4):165-176.
[16]BING Zhenshan, CHENG Long, CHEN Guang, et al. Towards Autonomous Locomotion:CPG-based Control of Smooth 3D Slithering Gait Transition of a Snake-like Robot[J]. Bioinspiration & Biomimetics, 2017, 12(3):035001.
[17]YANG Chenguang, GANESH G, HADDADIN S, et al. Human-like Adaptation of Force and Impedance in Stable and Unstable Interactions[J]. IEEE Transactions on Robotics, 2011, 27(5):918-930.
[18]YANG Chenguang, JIANG Yiming, HE Wei, et al. Adaptive Parameter Estimation and Control Design for Robot Manipulators with Finite-time Convergence[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10):8112-8123.
[19]YANG Chenguang, CHEN Chuize, HE Wei, et al. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3):777-787.
[20]XIONG Xiaofeng, MANOONPONG P. Adaptive Motor Control for Human-like Spatial-temporal Adaptation[C]∥2018 IEEE International Conference on Robotics and Biomimetics(ROBIO). Kuala Lumpur, 2018:2107-2112.
[21]XIONG Xiaofeng, MANOONPONG P. Online Sensorimotor Learning and Adaptation for Inverse Dynamics Control[J]. Neural Networks, 2021, 143:525-536.
[22]ZHANG Shuang, DONG Yiting, OUYANG Yuncheng, et al. Adaptive Neural Control for Robotic Manipulators with Output Constraints and Uncertainties[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11):5554-5564.
[23]朱雅光, 朱建伟, 李茹月, 等. 基于神经-肌肉架构的仿生并联躯干柔顺控制[J]. 中国机械工程, 2022, 33(13):1576-1585.
ZHU Yaguang, ZHU Jianwei, LI Ruyue, et al. Neuromuscular Architecture Based Compliance Control of Bionic Parallel Torsos[J]. China Mechanical Engineering, 2022, 33(13):1576-1585.
[24]ZHU Yaguang, ZHANG Liang, MANOONPONG P. Generic Mechanism for Waveform Regulation and Synchronization of Oscillators:an Application for Robot Behavior Diversity Generation[J]. IEEE Transactions on Cybernetics, 2022, 52(6):4495-4507.
[25]ZHU Yaguang, ZHANG Liang, GUO Wanjin,et al. A Simple and Flexible Movement Control Method for a Hexapod Walking Robot[C]∥Synergy of Automation, IoT & AI. CLAWAR Association Ltd.Kuala Lumpur, 2019:79-86.
[26]ZHU Yaguang, GUO Tong, LIU Qiong, et al. A Study of Arbitrary Gait Pattern Generation for Turning of a Bio-inspired Hexapod Robot[J]. Robotics and Autonomous Systems, 2017, 97:125-135.
[27]ZHU Yaguang, WU Yongsheng, LIU Qiong, et al. A Backward Control Based on σ -Hopf Oscillator with Decoupled Parameters for Smooth Locomotion of Bio-inspired Legged Robot[J]. Robotics and Autonomous Systems, 2018, 106:165-178.
[28]ZHU Yaguang, ZHOU Shuangjie, GAO Dongxiao, et al. Synchronization of Non-linear Oscillators for Neurobiologically Inspired Control on a Bionic Parallel Waist of Legged Robot[J]. Frontiers in Neurorobotics, 2019, 13:59.
[29]GIBSON G, DOSUNMU-OGUNBI O, GONG Yukai, et al. Terrain-Adaptive, ALIP-based Bipedal Locomotion Controller via Model Predictive Control and Virtual Constraints[C]∥2022 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Kyoto, 2022:6724-6731.
[30]SUN Yu, UBELLACKER W L, MA W L, et al. Online Learning of Unknown Dynamics for Model-based Controllers in Legged Locomotion[J]. IEEE Robotics and Automation Letters, 2021, 6(4):8442-8449.
|