[1]ZHU Junhui, MENG Siyuan, WANG Yong, et al. A Novel Monopolar Cross-scale Nanopositioning Stage Based on Dual Piezoelectric Stick-slip Driving Principle[J]. Micromachines, 2022, 13(11):2008.
[2]BARNARD H, RANDALL C, BRIDGES D, et al. The Long Range Voice Coil Atomic Force Microscope[J]. The Review of Scientific Instruments, 2012, 83(2):023705.
[3]LIU Chunlei, DU Quanpei, ZHOU Han, et al. 3D Printing of Lead Zirconate Titanate Piezoelectric Ceramics via Digital Light Processing (DLP)[J]. Ceramics International, 2023, 49(17):28492-28499.
[4]崔玉国, 孙宝元, 董维杰, 等. 压电陶瓷执行器迟滞与非线性成因分析[J]. 光学精密工程, 2003, 11(3):270-275.
CUI Yuguo, SUN Baoyuan, DONG Weijie, et al. Causes for Hysteresis and Nonlinearity of Piezoelectric Ceramic Actuators[J]. Optics and Precision Engineering, 2003, 11(3):270-275.
[5]唐凤, 黄尚廉, 刘光聪. PZT非线性特性的研究[J]. 压电与声光, 1997, 19(3):180-183.
TANG Feng, HUANG Shanglian, LIU Guangcong. Study on Non-linearity of PZT[J]. Piezoelectrics & Acoustooptics, 1997, 19(3):180-183.
[6]张连生, 张鹏程, 郝爽, 等. 基于电荷泵的压电致动器迟滞非线性改善研究[J]. 计量学报, 2023, 44(11):1646-1651.
ZHANG Liansheng, ZHANG Pengcheng, HAO Shuang, et al. Research on Hysteresis Nonlinearity Improvement of Piezoelectric Actuator Based on Charge Pump[J]. Acta Metrologica Sinica, 2023, 44(11):1646-1651.
[7]FURUTANI K, URUSHIBATA M, MOHRI N. Displacement Control of Piezoelectric Element by Feedback of Induced Charge[J]. Nanotechnology, 1998, 9(2):93-98.
[8]BARRETT R C, QUATE C F. Optical Scan-correction System Applied to Atomic Force Microscopy[J]. Review of Scientific Instruments, 1991, 62(6):1393-1399.
[9]李存尧, 杨依领, 吴高华, 等. 压电柔顺微操作器的H∞反馈控制[J]. 振动. 测试与诊断, 2023, 43(1):144-151.
LI Cunyao, YANG Yiling, WU Gaohua, et al. H∞ Infinity Feedback Control of Piezoelectric Micromanipulator[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(1):144-151.
[10]DONG Yangyang, HU Hong, WANG Hongjun. Identification and Experimental Assessment of Two-input Preisach Model for Coupling Hysteresis in Piezoelectric Stack Actuators[J]. Sensors and Actuators A:Physical, 2014, 220:92-100.
[11]NGUYEN P B, CHOI S B, SONG B K. A New Approach to Hysteresis Modelling for a Piezoelectric Actuator Using Preisach Model and Recursive Method with an Application to Open-loop Position Tracking Control[J]. Sensors and Actuators A:Physical, 2018, 270:136-152.
[12]于志亮, 刘杨, 王岩, 等. 基于改进PI模型的压电陶瓷迟滞特性补偿控制[J]. 仪器仪表学报, 2017, 38(1):129-135.
YU Zhiliang, LIU Yang, WANG Yan, et al. Hysteresis Compensation and Control of Piezoelectric Actuator Based on an Improved PI Model[J]. Chinese Journal of Scientific Instrument, 2017, 38(1):129-135.
[13]YANG Haigen, ZHU Wei, LIU Feifei. High-bandwidth Modeling for Rate-dependent Hysteresis Nonlinearity Using a Standard Prandtl-Ishlinskii Model[J]. AIP Advances, 2021, 11(4):045121.
[14]LI Qijie, LI Yanan, LI Jiangang, et al. Third-order Integral Sliding Mode Control of Piezoelectric Actuators Based on Rate-amplitude-dependent Prandtl-Ishlinskii Model[J]. International Journal of Robust and Nonlinear Control, 2023, 33(12):6895-6915.
[15]徐瑞瑞. 基于Bouc-Wen模型的压电陶瓷驱动的运动平台迟滞建模与控制研究[D]. 武汉:武汉工程大学, 2022.
XU Ruirui. Hysteresis Modeling and Control of Piezoelectric Ceramic-driven Motion Platform Based on Bouc-Wen Model[D].Wuhan:Wuhan Institute of Technology, 2022.
[16]SHAO Muyao, WANG Yiru, GAO Zhiyuan, et al. Discrete-time Rate-dependent Hysteresis Modeling and Parameter Identification of Piezoelectric Actuators[J]. Transactions of the Institute of Measurement and Control, 2022, 44(10):1968-1978.
[17]KANG Shengzheng, WU Hongtao, LI Yao, et al. A Fractional-order Normalized Bouc-Wen Model for Piezoelectric Hysteresis Nonlinearity[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(1):126-136.
[18]JANOCHA H, KUHNEN K. Real-time Compensation of Hysteresis and Creep in Piezoelectric Actuators[J]. Sensors and Actuators A:Physical, 2000, 79(2):83-89.
[19]KREJCI P, KUHNEN K. Inverse Control of Systems with Hysteresis and Creep[J]. IEE Proceedings - Control Theory and Applications, 2001, 148(3):185-192.
[20]张敬爱. 压电陶瓷二维微位移定位平台系统的建模及控制方法研究[D]. 长春:吉林大学, 2017.
ZHANG Jingai. Research on the Hysteresis Modeling and Control for PZT-Actuated Two Dimension Micro Platform[D].Changchun:Jilin University, 2017.
[21]RUDERMAN M. Presliding Hysteresis Damping of LuGre and Maxwell-slip Friction Models[J]. Mechatronics, 2015, 30:225-230.
[22]孙立宁, 安辉, 张涛, 等. 多维超精密微驱动器及控制系统的研究[J]. 仪器仪表学报, 1995, 16(增刊1):324-327.
SUN Lining, AN Hui, ZHANG Tao, et al. Research on Multi-dimensional Ultra-precision Microactuator and Control System[J]. Chinese Journal of Scientific Instrument, 1995, 16(S1):324-327.
[23]ZHANG Quan, SHEN Xin, ZHAO Jianguo, et al. Hysteresis Modeling of Piezoelectric Actuator Using Particle Swarm Optimization-based Neural Network[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2020, 234(23):4695-4707.
[24]周淼磊, 张敬爱, 赵宇, 等. 压电微定位平台神经网络与专家模糊复合控制方法[J]. 控制与决策, 2018, 33(1):95-100.
ZHOU Miaolei, ZHANG Jingai,ZHAO Yu, et al. Hybrid Control for Piezoelectric Micro Positioning Platform Based on BP Neural Network and Expert Fuzzy Control[J]. Control and Decision, 2018, 33(1):95-100.
[25]WU Yinan, CHEN He, SUN Ning, et al. Neural Network Based Adaptive Control for a Piezoelectric Actuator with Model Uncertainty and Unknown External Disturbance[J]. International Journal of Robust and Nonlinear Control, 2023, 33(3):2251-2272.
[26]NEl L. Some Theoretical Aspects of Rock-magnetism[J]. Advances in Physics, 1955, 4(14):191-243.
[27]DAMJANOVIC D, DEMARTIN M. The Rayleigh Law in Piezoelectric Ceramics[J]. Journal of Physics D:Applied Physics, 1996, 29(7):2057-2060.
[28]DAMJANOVIC D. Hysteresis in Piezoelectric and Ferroelectric Materials[M]∥BERTOTTI G, MAYERGOYZ I. The Science of Hysteresis. Amsterdam:Elsevier, 2006:337-465.
[29]许振宇, 刘文清, 刘建国, 等. 基于可调谐半导体激光器吸收光谱的温度测量方法研究[J]. 物理学报, 2012, 61(23):232-239.
XU Zhenyu, LIU Wenqing, LIU Jianguo, et al. Temperature Measurements Based on Tunable Diode Laser Absorption Spectroscopy[J]. Acta Physica Sinica, 2012, 61(23):232-239.
[30]张萌, 张松林, 刘玉为, 等. 可调谐半导体激光器压电驱动系统的优化设计[J]. 中国机械工程, 2024, 35(4):656-665.
ZHANG Meng, ZHANG Songlin, LIU Yuwei, et al. Optimal Design of Piezo-based Actuated Systems in Tunable Diode Lasers[J]. China Mechanical Engineering, 2024, 35(4):656-665.
[31]DEVASIA S, ELEFTHERIOU E, REZA MOHEIMANI S O. A Survey of Control Issues in Nanopositioning[J]. IEEE Transactions on Control Systems Technology, 2007, 15(5):802-823.
[32]ZHANG Meng, DAMJANOVIC D. A Quasi-rayleigh Model for Modeling Hysteresis of Piezoelectric Actuators[J]. Smart Materials and Structures, 2020, 29(7):075012.
[33]ZHANG Meng, LIU Zhigang, ZHU Yu. Inverse Rate-dependent Rayleigh Model Based Feedforward Control for Piezoelectric-driven Mechanism[J]. IEEE Access, 2020, 8:194808-194819.
[34]CAO K, HAO G, LIU Q, et al. Hysteresis Modeling and Compensation of Fast Steering Mirrors with Hysteresis Operator Based Back Propagation Neural Networks[J]. Micromachines, 2021, 12(7):732.
|