中国机械工程 ›› 2024, Vol. 35 ›› Issue (09): 1597-1605.DOI: 10.3969/j.issn.1004-132X.2024.09.009

• 机械基础工程 • 上一篇    下一篇

基于Rayleigh-BP模型的压电驱动系统迟滞建模与前馈控制

张萌;范鹏举;王俊璞;刘时成   

  1. 陕西科技大学机电工程学院,西安,710021
  • 出版日期:2024-09-25 发布日期:2024-10-23
  • 作者简介:张萌,男,1990年生,副教授、博士。研究方向为智能结构及系统的优化设计。E-mail:zhangmeng@sust.edu.cn。
  • 基金资助:
    陕西省自然科学基础研究计划(2023-JC-QN-0408)

Hysteresis Modeling and Feedforward Control for Piezoelectric Driven Systems Based on Rayleigh-BP Model

ZHANG Meng;FAN Pengju;WANG Junpu;LIU Shicheng   

  1. College of Mechanical and Electrical Engineering,Shaanxi University of Science & Technology,
    Xian,710021
  • Online:2024-09-25 Published:2024-10-23

摘要: 针对可调谐半导体激光器压电驱动系统的迟滞非线性,提出了一种基于Rayleigh-BP模型的建模及控制方法。利用空间扩展法建立了Rayleigh-BP率相关迟滞模型,该模型实现了对压电驱动系统的率相关迟滞非线性的精准预测;利用逆向算法求解了Rayleigh模型的逆模型,并将该模型与BP神经网络结合,设计了前馈控制器对系统进行补偿;对前馈控制方法进行了仿真与实验验证。结果表明,建立的Rayleigh-BP模型具有较高的精度,在10 Hz时均方根误差仅为0.0469 μm。前馈控制方法可以明显提高系统输出的线性度,在40 Hz时仿真结果均方根误差为0.0274 μm,线性相关系数R2为0.999 92;在30 Hz时实验结果均方根误差为0.0506 μm,线性相关系数R2达到了0.999 55,极大降低了迟滞现象。

关键词: 迟滞非线性, Rayleigh模型, 反向传播(BP)神经网络, 前馈控制

Abstract: Aiming at the hysteresis nonlinearity of the piezoelectric driven systems for tunable external cavity diode lasers, a modelling and control method was proposed herein based on Rayleigh-BP model. Firstly, a Rayleigh-BP rate-dependent hysteresis model was developed by spatial expansion method, which achieved an accurate prediction of rate-dependent hysteresis nonlinearity of piezoelectric driven systems. Secondly, the inverse model of Rayleigh model was solved by an inverse algorithm, and the model was combined with a BP neural network to design a feedforward controller to compensate the systems. Finally, the feedforward control method was validated by simulation and experiments. The results show that the Rayleigh-BP model developed has high accuracy, the root mean square error is only as 0.0469 μm at 10 Hz. The feedforward control method may significantly improve the linearity of the system outputs, the root mean square error of the simulation results is as 0.0274 μm and the linear correlation coefficient R2 is as 0.999 92 at 40 Hz. The experimental results show a root mean square error of 0.0506 μm and a linear correlation coefficient R2 of 0.999 55 at 30 Hz, which greatly reduces the hysteresis phenomenon.

Key words: hysteresis nonlinearity, Rayleigh model, back propagation(BP) neural network, feedforward control

中图分类号: