[1]孙晓峰, 金涛, 周亦胄, 等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12):1-11.
SUN Xiaofeng, JIN Tao, ZHOU Yizhou, et al. Research Progress of Nickel-base Single Crystal Superalloys[J]. Materials China, 2012, 31(12):1-11.
[2]窦学铮, 蒋立武, 宋尽霞, 等. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24):158-172.
DOU Xuezheng, JIANG Liwu, SONG Jinxia, et al. Research Progress on Anisotropy of Mechanical Properties for Nickel Based Single Crystal Superalloys[J]. Materials Reports, 2022, 36(24):158-172.
[3]张健, 王莉, 王栋, 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9):1077-1094.
ZHANG Jian, WANG Li, WANG Dong, et al. Recent Progress in Research and Development of Nickel-based Single Crystal Superalloys[J]. Acta Metallurgica Sinica, 2019, 55(9):1077-1094.
[4]蒋睿嵩, 汪文虎, 王增强, 等. 航空发动机涡轮叶片精密成形技术及其发展趋势[J]. 航空制造技术, 2016, 59(21):57-62.
JIANG Ruisong, WANG Wenhu, WANG Zengqiang, et al. Precision Forming Technology and Its Development Trend of Aeroengine Turbine Blade[J]. Aeronautical Manufacturing Technology, 2016, 59(21):57-62.
[5]杨忠学. IC10高温合金抗疲劳缓进磨削技术研究[D]. 西安:西北工业大学, 2019.
YANG Zhongxue. Research on Anti-fatigue Creep-feed Grinding Technology for IC10 Superalloy[D]. Xian:Northwestern Polytechnical University, 2019.
[6]金滩, 何训, 王其荣, 等. 向极限挑战的高性能磨削技术发展及其在航空制造领域的应用前景[J]. 航空制造技术, 2022, 65(9):20-33.
JIN Tan, HE Xun, WANG Qirong, et al. Development of High Performance Grinding Processes to Challenge Physical Limitations:Application Prospects in Aeronautical Manufacture Engineering[J]. Aeronautical Manufacturing Technology, 2022, 65(9):20-33.
[7]朱志成, 杨昭, 潘博, 等. 各向异性对IC10高温合金磨削表面完整性的影响[J]. 表面技术, 2023, 52(1):222-231.
ZHU Zhicheng, YANG Zhao, PAN Bo, et al. Effect of Anisotropy on Surface Integrity of IC10 Superalloy after Grinding[J]. Surface Technology, 2023, 52(1):222-231.
[8]ZHAO Shuangqun, XIE Xishan, SMITH G D, et al. Microstructural Stability and Mechanical Properties of a New Nickel-based Superalloy[J]. Materials Science and Engineering:A, 2003, 355(1/2):96-105.
[9]LIN Y C, CHEN Xiaomin, WEN Dongxu, et al. A Physically-based Constitutive Model for a Typical Nickel-based Superalloy[J]. Computational Materials Science, 2014, 83:282-289.
[10]贾新云, 陈升平, 宗毳, 等. DD5合金单晶双联整铸导向叶片的热工艺匹配性[J]. 金属热处理, 2022, 47(6):13-18.
JIA Xinyun, CHEN Shengping, ZONG Cui, et al. Thermal Process Matching of Single Crystal Double Casting Guide Vane of DD5 Alloy[J]. Heat Treatment of Metals, 2022, 47(6):13-18.
[11]曾曦, 黄永德, 简园园, 等. 铸态DD5单晶在热处理过程中的组织转变规律[J]. 精密成形工程, 2019, 11(5):166-172.
ZENG Xi, HUANG Yongde, JIAN Yuanyuan, et al. Microstructure Transformation Rule of As-cast DD5 Single Crystal during Heat Treatment[J]. Journal of Netshape Forming Engineering, 2019, 11(5):166-172.
[12]黄新春, 张定华, 姚倡锋, 等. 镍基高温合金GH4169磨削参数对表面完整性影响[J]. 航空动力学报, 2013, 28(3):621-628.
HUANG Xinchun, ZHANG Dinghua, YAO Changfeng, et al. Effects of Grinding Parameters on Surface Integrity of GH4169 Nickel-based Superalloy[J]. Journal of Aerospace Power, 2013, 28(3):621-628.
[13]WANG Junwei, XU Jijin, WANG Xiangfei, et al. A Comprehensive Study on Surface Integrity of Nickel-based Superalloy Inconel 718 under Robotic Belt Grinding[J]. Materials and Manufacturing Processes, 2019, 34(1):61-69.
[14]蔡明, 巩亚东, 屈硕硕, 等. 镍基单晶高温合金磨削表面质量及亚表面微观组织试验[J]. 东北大学学报(自然科学版), 2019, 40(3):386-391.
CAI Ming, GONG Yadong, QU Shuoshuo, et al. Experiment of Grinding Surface Quality and Subsurface Microstructure for Nickel-based Single Crystal Superalloy[J]. Journal of Northeastern University(Natural Science), 2019, 40(3):386-391.
[15]DING Wenfeng, XU Jiuhua, CHEN Zhenzhen, et al. Grindability and Surface Integrity of Cast Nickel-based Superalloy in Creep Feed Grinding with Brazed CBN Abrasive Wheels[J]. Chinese Journal of Aeronautics, 2010, 23(4):501-510.
[16]ZHANG Shuaiqi, YANG Zhongxue, JIANG Ruisong, et al. Effect of Creep Feed Grinding on Surface Integrity and Fatigue Life of Ni3Al Based Superalloy IC10[J]. Chinese Journal of Aeronautics, 2021, 34(1):438-448.
[17]王冬冬, 王波. GH4169抗疲劳表面砂带磨削工艺参数优化[J]. 航空制造技术, 2023, 66(21):125-131.
WANG Dongdong, WANG Bo. Optimization of Process Parameters for GH4169 Anti-fatigue Surface Abrasive Belt Grinding[J]. Aeronautical Manufacturing Technology, 2023, 66(21):125-131.
[18]LIU Enze, ZHENG Zhi, TONG Jian, et al. Study on High Cycle Fatigue Properties of DZ468 Superalloy[J]. Acta Metallurgica Sinica, 2010, 46(6):708-714.
[19]SUN Jianfei, WANG Tianming, SU Anpeng, et al. Surface Integrity and Its Influence on Fatigue Life when Turning Nickel Alloy GH4169[J]. Procedia CIRP, 2018, 71:478-483.
[20]王欣, 胡云辉, 王晓峰, 等. 喷丸强化对FGH96粉末高温合金疲劳性能应力集中敏感性的影响[J]. 航空制造技术, 2017, 60(13):48-53.
WANG Xin, HU Yunhui, WANG Xiaofeng, et al. Effect of Shot Peening on Fatigue Performance Stress-concentration Sensitivity of FGH96 Powder Metallurgy Superalloy[J]. Aeronautical Manufacturing Technology, 2017, 60(13):48-53.
[21]黄新春, 张定华, 姚倡锋, 等. 高效抗疲劳磨削加工技术研究[J]. 航空精密制造技术, 2011, 47(3):1-4.
HUANG Xinchun, ZHANG Dinghua, YAO Changfeng, et al. Research on High-efficient and Anti-fatigue Grinding Machining Technology[J]. Aviation Precision Manufacturing Technology, 2011, 47(3):1-4.
[22]LI Xun, WANG Yixuan, XU Rufeng, et al. Influence of Surface Integrity on Fatigue Behavior of Inconel 718 and Ti6Al4V Workpieces with CBN Electroplated Wheel[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5):2345-2356.
[23]靳淇超, 曹帅帅, 汪文虎, 等. DD5镍基单晶高温合金缓进磨削表面完整性研究[J]. 西北工业大学学报, 2022, 40(1):189-198.
JIN Qichao, CAO Shuaishuai, WANG Wenhu, et al. Study on Surface Integrity of DD5 Nickel-based Single Crystal Super-alloy in Creep-feed Grinding[J]. Journal of Northwestern Polytechnical University, 2022, 40(1):189-198.
[24]NEUBER H. Theory of Notch Stresses[M]. Berlin:Springer Verlag, 1958:204-210.
|