[1]HE K, XU Q, JIA M. Modeling and Predicting Surface Roughness in Hard Turning Using a Bayesian Inference-based HMM-SVM Model[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(3):1092-1103.
[2]BENARDOS P G, VOSNIAKOS G C. Predicting Surface Roughness in Machining: a Review[J]. International Journal of Machine Tools & Manufacture, 2003, 43(8):833-844.
[3]LU J, LIAO X, LI S, et al. An Effective ABC-SVM Approach for Surface Roughness Prediction in Manufacturing Processes[J]. Complexity, 2019, 2019: 3094670.
[4]AGRAWAL A, GOEL S, BIN RASHID W, et al. Prediction of Surface Roughness during Hard Turning of AISI 4340 Steel (69 HRC)[J]. Applied Soft Computing Journal, 2015, 30:279-286.
[5]CHEN Y, SUN R, GAO Y, et al. A Nested-ANN Prediction Model for Surface Roughness Considering the Effects of Cutting Forces and Tool Vibrations[J]. Measurement, 2017, 98:25-34.
[6]TANGJITSITCHAROEN S, THESNIYOM P, RATANAKUAKANGWAN S. Prediction of Surface Roughness in Ball-end Milling Process by Utilizing Dynamic Cutting Force Ratio[J]. Journal of Intelligent Manufacturing, 2017, 28:13-21.
[7]GARCA PLAZA E, NEZ LPEZ P J. Application of the Wavelet Packet Transform to Vibration Signals for Surface Roughness Monitoring in CNC Turning Operations[J]. Mechanical Systems and Signal Processing, 2018, 98:902-919.
[8]朱俊江, 濮玉, 周柔刚. 基于特征排序-神经网络算法的表面粗糙度预测[J]. 计算机集成制造系统, 2020,26(12):3268-3273.
ZHU Junjiang, PU Yu, ZHOU Rougang. Prediction of Surface Roughness Based on Feature Selection-Neural Network[J]. Computer Integrated Manufacturing Systems, 2020,26(12):3268-3273.
[9]HESSAINIA Z, BELBAH A, YALLESE M A, et al. On the Prediction of Surface Roughness in the Hard Turning Based on Cutting Parameters and Tool Vibrations[J]. Measurement, 2013, 46(5):1671-1681.
[10]余剑武, 胡其丰, 文丞, 等. 基于支持向量机的电火花加工8418钢表面粗糙度预测模型[J]. 中国机械工程, 2018, 29(7):771-774.
YU Jianwu, HU Qifeng, WEN Cheng, et al. Prediction Model of Surface Roughness of 8418 Steel by EDM Based on SVM[J]. China Mechanical Engineering, 2018, 29(7):771-774.
[11]谢楠, 周俊锋, 郑蓓蓉. 考虑能耗的多传感器融合加工表面粗糙度预测方法[J]. 表面技术, 2018, 9:240-249.
XIE Nan, ZHOU Junfeng, ZHENG Beirong. An Approach for Surface Roughness Prediction in Machining Based on Multi-sensor Fusion Considering Energy Consumption[J]. Surface Technology, 2018, 9:240-249.
[12]LIN Y C, WU K D, SHIH W C, et al. Prediction of Surface Roughness Based on Cutting Parameters and Machining Vibration in End Milling Using Regression Method and Artificial Neural Network[J]. Applied Sciences, 2020, 10(11):3941-3962.
[13]KHORASANI A, YAZDI M R S. Development of a Dynamic Surface Roughness Monitoring System Based on Artificial Neural Networks (ANN) in Milling Operation [J]. International Journal of Advanced Manufacturing Technology, 2017, 93(1/4):141-151.
[14]HIBA C, HAMID Z, OMAR A. Deep Convolutional Neural Networks for Breast Cancer Screening[J]. Computer Methods and Programs in Biomedicine, 2018, 157:19-30.
[15]PAN H, HE X, TANG S, et al. An Improved Bearing Fault Diagnosis Method Using One-dimensional CNN and LSTM[J]. Strojniski Vestnik - Journal of Mechanical Engineering, 2018, 64(7/8): 443-452.
[16]INCE T, KIRANYAZ S, EREN L, et al. Real-time Motor Fault Detection by 1-D Convolutional Neural Networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067-7075.
[17]LIN W J, LO S H, YOUNG H T, et al. Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction Using Vibration Signal Analysis[J]. Applied Sciences, 2019, 9(7):1462-1478.
[18]PAN Y N, KANG R K, DONG Z G, et al. On-line Prediction of Ultrasonic Elliptical Vibration Cutting Surface Roughness of Tungsten Heavy Alloy Based on Deep Learning[J/OL]. Journal of Intelligent Manufacturing, 2020[2020-11-28]. https:∥doi.org/10.1007/s10845-020-01669-9.
[19]KENNEDY J, EBERHART R C. Particle Swarm Optimization[C]∥Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, 1995:1942-1948.
[20]HE K, GAO M, ZHAO Z. Soft Computing Techniques for Surface Roughness Prediction in Hard Turning: a Literature Review [J]. IEEE Access, 2019, 7:89556-89569.
[21]曹继平, 王赛, 岳小丹, 等. 基于自适应深度卷积神经网络的发射车滚动轴承故障诊断研究[J]. 振动与冲击, 2020, 39(5):97-104.
CAO Jiping, WANG Sai, YUE Xiaodan, et al. Rolling Bearing Fault Diagnosis of Launch Vehicle Based on Adaptive Deep CNN[J]. Journal of Vibration and Shock, 2020, 39(5):97-104.
[22]李聪波, 尹誉先, 肖溱鸽, 等. 数据驱动下基于元动作的数控车削能耗预测方法[J]. 中国机械工程, 2020, 31(21):2601-2611.
LI Congbo, YIN Yuxian, XIAO Qinge, et al. Data-driven Energy Consumption Prediction Method of CNC Turning Based on Meta-action[J]. China Mechanical Engineering, 2020, 31(21):2601-2611.
|