[1]赵振业. 高强度合金应用与抗疲劳制造技术[J]. 航空制造技术, 2007(10):30-33.
ZHAO Zhenye. Application of High Strength Alloy and Anti-fatigue Manufacture[J]. Aeronautical Manufacturing Technology, 2007(10):30-33.
[2]高玉魁, 赵振业. 齿轮的表面完整性与抗疲劳制造技术的发展趋势[J]. 金属热处理, 2014, 39(4):1-6.
GAO Yukui,ZHAO Zhenye. Development Trend of Surface Integrity and Anti-fatigue Manufacture of Gears[J]. Heat Treatment of Metals, 2014, 39(4):1-6.
[3]卢秉恒. 机械制造技术基础[M]. 北京:机械工业出版社, 2007.
LU Bingheng. Technical Foundation of Mechanical Manufacturing[M]. Beijing:China Machine Press, 2007.
[4]王栋, 律谱, 陈真真. 三维表面粗糙度对18CrNiMo7-6钢旋转弯曲疲劳寿命的影响[J]. 表面技术, 2019, 48(11):283-289.
WANG Dong, LYU Pu, CHEN Zhenzhen. Effect of Three-dimensional Surface Roughness on Rotating Bending Fatigue Life of 18CrNiMo7-6 Steel[J]. Surface Technology , 2019, 48(11):283-289.
[5]姜增辉, 贾春德. 车铣原理[M]. 北京:国防工业出版社, 2003.
JIANG Zenghui, JIA Chunde. Turn-milling Principle[M]. Beijing:National Defense Industry Press, 2003.
[6]孙涛, 秦录芳, 傅玉灿, 等. 车铣加工技术研究现状及展望[J]. 机床与液压, 2019, 47(20):170-176.
SUN Tao, QIN Lufang, FU Yucan, et al. Research Status and Prospect of Turn-milling Technology[J]. Machine Tool and Hydraulics, 2019, 47(20) :170-176.
[7]SHIMANUKI K, HOSOKAWA A, KOYANO T, et al. Studies on High-efficiency and High-precision Orthogonal Turn-milling — the effects of Relative Cutting Speed and Tool Axis Offset on Tool Flank Temperature[J]. Precision Engineering, 2020, 66:180-187.
[8]姜增辉, 段宗玉, 杨大卫. 切向车铣铝合金回转体工件表面形貌的试验研究[J]. 制造技术与机床, 2010(2):35-36.
JIANG Zenghui, DUAN Zongyu, YANG Dawei. Experimental Research on the Surface Topography of the Aluminium Alloy Rotary Workpiece Machining by the Tangential Turn-milling[J]. Manufacturing Technology and Machine Tool, 2010(2):35-36.
[9]SAVAS V, OZAY C, Analysis of the Surface Roughness of Tangential Turn-milling for Machining with End Milling Cutter[J]. Journal of Materials Processing Technology, 2007, 186(1/3):279-283.
[10]RATNAM C, VIKRAM K A, BEN B S, et al. Process Monitoring and Effects of Process Parameters on Responses in Turn-milling Operations Based on SN Ratio and ANOVA[J]. Measurement, 2016, 94:221-232.
[11]CHEN P. Cutting Temperature and Forces in Machining of High-performance Materials with Self-propelled Rotary Tool[J]. JSME International Journal. Ser. 3, Vibration, Control Engineering, Engineering for Industry, 1992, 35(1):180-185.
[12]BERENJI K R, KARA M E, BUDAK E. Investigating High Productivity Conditions for Turn-milling in Comparison to Conventional Turning[J]. Procedia CIRP, 2018, 77:259-262.
[13]CHOUDHURY S K, MANGRULKAR K S. Investigation of Orthogonal Turn-milling for the Machining of Rotationally Symmetrical Work Pieces[J]. Journal of Materials Processing Technology, 2000, 99(1/3):120-128.
[14]徐骣, 金成哲. 车铣加工表面残余应力的研究[J]. 制造技术与机床, 2008(1):80-82.
XU Chan, JIN Chengzhe. Study on Residual Surface Stress by Turn-milling[J]. Manufacturing Technology and Machine Tool, 2008(1):80-82.
[15]KARAGUZEL U, BAKKAL M, BUDAK E. Process Modeling of Turn-milling Using Analytical Approach[J]. Procedia CIRP, 2012, 4(11):131-139.
[16]严樱子, 李蓓智, 杨建国,等. 铣削方式对残余应力影响的仿真及试验研究[J]. 现代制造工程, 2016(8):1-6.
YAN Yingzi, LI Beizhi, YANG Jianguo, et al. Simulation and Experimental Research on Residual Stress under Different Milling Method[J]. Modern Manufacturing Engineering, 2016(8):1-6.
[17]杨大卫. 切向车铣运动建模及理论表面粗糙度的研究[D]. 沈阳:沈阳理工大学, 2010.
YANG Dawei. Research on Motion Modeling and Theorical Surface Roughness of Tangential Turn-milling[D]. Shenyang:Shenyang Ligong University, 2010.
[18]尹成湖, 周湛学. 机械加工工艺简明速查手册[M]. 北京:化学工业出版社, 2016.
YIN Chenghu, ZHOU Zhanxue. Concise Quick Reference Manual of Machining Process[M]. Beijing:Chemical Industry Press, 2016.
[19]高玉魁. 表面完整性理论与应用[M]. 北京:化学工业出版社, 2014.
GAO Yukui. Surface Integrity Theory and Application[M]. Beijing:Chemical Industry Press, 2014.
|