China Mechanical Engineering ›› 2024, Vol. 35 ›› Issue (03): 381-393.DOI: 10.3969/j.issn.1004-132X.2024.03.001

Previous Articles     Next Articles

Study on Force Model and Surface Integrity of Cylindrical Grinding 18CrNiMo7-6 Steels

WANG Dong;CHEN Lei;ZHANG Zhipeng   

  1. School of Mechanical and Power Engineering,Zhengzhou University,Zhengzhou,450001

  • Online:2024-03-25 Published:2024-04-22

外圆磨削18CrNiMo7-6力模型及表面完整性研究

王栋;陈磊;张志鹏   

  1. 郑州大学机械与动力工程学院,郑州,450001

  • 作者简介:王栋,男,1970年生,教授、博士。研究方向为抗疲劳制造技术。E-mail:wangdong@zzu.edu.cn。
  • 基金资助:
    国家自然科学基金重点项目(U1804254);河南省重大科技专项(201400211200)

Abstract:  In order to accurately and effectively control the influences of grinding parameters on grinding force and surface integrity, a three-stage grinding force theoretical model was established based on the plastic deformation, indentation theory and shear strain effect between abrasive particles and materials by analytical method. The brown corundum grinding wheels were selected for grinding experiments to explore the effects of grinding parameters on grinding force and the effects of grinding parameters and grinding force on surface integrity. The optimal processing parameters for cylindrical grinding were obtained through orthogonal experiments of cylindrical transverse grinding. The results show that the average prediction errors of normal and tangential grinding forces in the cylindrical grinding force model are 5.56% and 7.08%, respectively. The radial feed speed of the grinding wheel has the greatest impact on grinding force, followed by grinding width, and the influences of workpiece speed and grinding wheel particle size are relatively small. The radial feed speed and grinding width of the grinding wheel have a significant impact on residual stress, and the particle size of the grinding wheel has the greatest impact on surface roughness. As the grinding force increases, the surface roughness value continuously increases, and the residual stress firstly decreases and then increases. The maximum residual stress value along the depth direction firstly increases and then decreases. Within the parameters taken in the experiments, the distribution range of residual stress is basically 20~40 μm. The optimal combination of processing parameters is a radial feed speed of 0.15 mm/min for the grinding wheel, a workpiece speed of 120 r/min, a grinding width of 10 mm, and a grinding wheel particle size of 80.

Key words: cylindrical grinding, plunge grinding, grinding force model, 18CrNiMo7-6 steel, surface integrity

摘要: 为了准确和有效地控制磨削参数对磨削力及表面完整性的影响,通过解析法,以磨粒与材料间的塑性变形、压痕理论以及剪切应变效应为理论依据,建立了三阶段的磨削力理论模型。选定棕刚玉砂轮进行磨削试验,探究了磨削参数对磨削力的影响以及磨削参数和磨削力对表面完整性的影响,通过外圆横向磨削正交试验获得了外圆磨削最优工艺参数。结果表明,外圆磨削力模型法向磨削力和切向磨削力的预测平均误差分别为5.56%和7.08%;砂轮径向进给速度fr对磨削力的影响最大,磨削宽度b次之,工件转速nw和砂轮粒度的影响较小;fr和b对残余应力的影响较大,砂轮粒度对表面粗糙度的影响最大;随着磨削力的增大,表面粗糙度值一直增大,残余应力先减小后增大,沿深度方向残余应力最大值先增大后减小,在试验所取参数条件下,影响残余应力的深度分布范围基本在20~40 μm;最优工艺参数组合如下:fr=0.15 mm/min,nw=120 r/min,b=10 mm,砂轮粒度80。

关键词: 外圆磨削, 横向磨削, 磨削力模型, 18CrNiMo7-6钢, 表面完整性 

CLC Number: