China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (18): 2143-2160.DOI: 10.3969/j.issn.1004-132X.2022.18.001
Previous Articles Next Articles
WANG Dongfeng1,2;YUAN Julong1;WANG Yanshuang3,4;CHENG Yongjie3,4;LYU Binghai1
Online:
2022-09-25
Published:
2022-10-05
王东峰1,2;袁巨龙1;王燕霜3,4;程勇杰3,4;吕冰海1
通讯作者:
王燕霜(通信作者),女,1972年生,教授、博士研究生导师。研究方向为轴承及润滑。E-mail:hkd_wang_yan_shuang@126.com。
作者简介:
王东峰,男,1980 年生,教授级高级工程师。研究方向为轴承设计、工艺、试验及应用技术。E-mail:zyswdf@163.com。
基金资助:
CLC Number:
WANG Dongfeng, YUAN Julong, WANG Yanshuang, CHENG Yongjie, LYU Binghai. Research Progresses on Surface Integrity of Bearing Grooves[J]. China Mechanical Engineering, 2022, 33(18): 2143-2160.
王东峰, 袁巨龙, 王燕霜, 程勇杰, 吕冰海. 轴承沟道表面完整性研究进展[J]. 中国机械工程, 2022, 33(18): 2143-2160.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2022.18.001
[1]李兴林, 张仰平, 曹茂来, 等.滚动轴承故障监测诊断技术应用进展[J].工程与试验,2009, 49(4):1-5. LI Xingling, ZHANG Yangping, CAO Maolai, et al. Development of Fault Detection and Diagnosis Technology of Rolling Bearing[J]. Engineering & Test, 2009, 49(4):1-5. [2]FERREIRA J, BALTHAZAR J C, ARAUJO A. An Ivestigation of Rail Bearing Reliability under Real Conditions of Use[J]. Engineering Failure Analysis, 2003, 10(6):745-758. [3]王旭,赵萍,吕冰海,等.滚动轴承工作表面超精密加工技术研究现状[J].中国机械工程, 2019, 30(11):1306-1307. WANG Xu, ZHAO Ping, LYU Binghai, et al. Research Status of Ultra-precision Machining Technologies for Working Surface of Rolling Bearings[J]. China Mechanical Engineering, 2019, 30(11):1306-1307. [4]HENRIKSEN E. Residual Stresses in Machined Surfaces[J].Trans. ASME, 1951, 73:69-74. [5]FIELD M, KAHLES J. The Surface Integrity of Machined and Ground High Strength Steels[J]. DIMC Report, 1946, 210:54-58. [6]王仁智.工程金属材料/零件的表面完整性及其断裂抗力[J].中国表面工程, 2011, 24(4):55-57. WANG Renzhi. Surface Integrity and Fracture Resistance of Engineering Metallic Materials and Components[J]. China Surface Engineering, 2011, 24(4):55-57. [7]陈雷, 吕泉,马艳玲,等. 表面完整性对航空发动机零件疲劳寿命的影响分析[J].航空精密制造技术, 2012, 48(5): 47-55. CHEN Lei, LYU Quan, MA Yanling, et al.Analysis of the Effect of Surface Integrity on the Fatigue Life of Aeroengine Parts[J]. Aviation Precision Manufacturing Technology, 2012, 48(5):47-55. [8]初铭强, 丁仁根, 张书彦, 等. 航空零部件加工表面完整性[J].材料学报, 2021, 35(7):07183-07186. CHU Mingqiang, DING Rengen, ZHANG Shuyan, et al. Surface Integrity for Machining Aerospace Parts[J].Materials Reports, 2021, 35(7):07183-07186. [9]苏涌翔. 超声滚挤压轴承套圈表面完整性研究[D].洛阳:河南科技大学, 2019. SU Yongxiang. Research on Surface Integrity of Bearing Steel by Ultrasonic Roll Extrusion[D]. Luoyang:Henan University of Science and Technology, 2019. [10]DAVIM J. Surface Integrity in Machining[M]. London : Springer, 2010. [11]赵勇. 降低轴承沟道波纹度方法的探讨[J]. 哈尔滨轴承, 2005, 26(4):39-41. ZHAO Yong. Method to Reduce Bearing Waviness[J].Journal of Harbin Bearing, 2005, 26(4):39-41. [12]秘文博. Si3N4陶瓷轴承外圈沟道的精磨与超精实验研究[D]. 沈阳:沈阳建筑大学, 2013. MI Wenbo. Experimental Research of Precision Grinding and Superfinishing on Raceways of Si3N4 Ceramic Bearing Outer Rings[D]. Shenyang:Shenyang Architecture University, 2013. [13]JIANG J, GE P, SUN S, et al. The Theoretical and Experimental Research on the Bearing Inner Ring Raceway Grinding Process Aiming to Improve Surface Quality and Process Efficiency Based on the Integrated Grinding Process Model[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(1/4):747-765. [14]ZHOU C, QIAN J. Optimization of Grinding Efficiency Considering Surface Integrity of Bearing Raceway[J]. SN Applied Sciences, 2019, 679:1-7. [15]常舟,贾谦,查俊. 轴承滚道磨削表面完整性的离散度研究[J]. 哈尔滨轴承, 2018, 39(1):21-23. CHANG Zhou,JIA Qian,ZHA Jun. Study on Scatter of Surface Integrity of Bearing Raceway Grinding[J].Journal of Harbin Bearing,2018,39(1):21-26. [16]吴玉厚, 陈文征, 孙键, 等. 氮化硅陶瓷轴承套圈沟道超精加工工艺参数优化研究[J]. 现代制造工程, 2020(10):78-82. WU Yuhou, CHEN Wenzheng, SUN Jian, et al. Study on the Optimization of the Technological Parameters of the Groove Super Finishing of Silicon Nitride Ceramic Bearing Rings[J]. Modern Manufacturing Engineering, 2020(10):78-82. [17]王浩. 氮化硅全陶瓷球轴承沟道超精研加工机理与试验研究[D]. 沈阳:沈阳建筑大学, 2020. WANG Hao. Research on Mechanism and Super Finishing Process of Silicon Nitried Ceramic Ball Bearing Raceway[D]. Shenyang:Shenyang Architecture University, 2020. [18]REN C Z, ZHAO S W, WU Z Y, et al. Electrolytic In-process Dressing (ELID) and Grinding for the Ring Raceway of Ball Bearings[J]. Key Engineering Materials, 2004, 259/260:268-272. [19]FATHIM K, SENTHIL E K, RAHMAN H, et al. A Study on Wear Mechanism and Wear Reduction Strategies in Grinding Wheels Used for ELID Grinding[J]. Wear , 2003, 254 (12):1247-1255. [20]DANG J Q, ZHANG H, AN Q L, et al. Surface Integrity and Wear Behavior of 300M Steel Subjected to Ultrasonic Surface Rolling Process[J]. Surface & Coating Technology, 2021, 421:127380. [21]杨庆伟. 低噪声深沟球轴承的振动[J].轴承, 1997(3):37-39. YANG Qingwei. Vibration of Low Noise Deep Groove Ball Bearing[J]. 1997(3):37-39. [22]TALLIAN T E, GUSTAFSSON O G. Progress in Rolling Bearing Vibration Research and Control[J]. ASLE Transactions, 1965, 8(3):195-207. [23]YHLAND E M. Waviness Measurement—an Instrument for Quality Control in Rolling Bearing Industry[J]. Proceedings of the Institution of Mechanical Engineers, 1967, 182:438-445. [24]MEYER L D, AHLGREN F F, WEICHBRODT B. An Analytic Model for Ball Bearing Vibration to Predict Vibration Response to Distributed Defects[J]. Transactions of the American Society of Mechanical Engineers, Journal of Mechanical Design, 1980, 102:205-210. [25]WARDLE F P. Vibration Forces Produced by Waviness of the Rolling Surfaces of Thrust Loaded Ball Bearings Part 1:Theory[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 1988, 202:305-312. [26]RAHNEJET H, GOHAR R. The Vibrations of Radial Ball Bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 1985, 199:181-193. [27]SUNERSJO C S. Rolling Bearing Vibrations—the Effects of Geometrical Imperfections and Wear[J]. Journal of Sound and Vibration, 1985, 98(4):455-474. [28]WARDLE F P. Vibration Forces Produced by Waviness of the Rolling Surfaces of Thrust Loaded Ball Bearings Part 2:Experimental Validation[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 1988, 202:313-319. [29]LYNAGH N, RAHNEJAT H, EBRAHIMI M, et al. Bearing Induced Vibration in Precision High Speed Routing Spindles[J]. International Journal of Machine Tools & Manufacture, 2000, 40:561-577. [30]邵建敏,王伟.表面波纹度对球轴承振动影响的模拟分析[J].郑州工学院学报, 1994, 15(3):67-72. SHAO Jianmin, WANG Wei. Vibration of a Ball Bearing by Waveness-computer-simulation[J]. Journal of Zhengzhou Institute of Technology, 1994, 15(3):67-72. [31]赵联春. 球轴承振动的研究[D].杭州:浙江大学, 2003. ZHAO Lianchun. Research on Vibration of Ball Bearings[D]. Hangzhou:Zhejiang University,2003. [32]赵联春, 马家驹. 球轴承的弹性接触振动[J].机械工程学报, 2003, 39(5):61-63. ZHAO Lianchun, MA Jiaju. Elastic Contact Vibrations of Ball Bearings[J]. Journal of Mechanical Engineering, 2003, 39(5):61-63. [33]冯克明.套圈沟道波纹度对轴承振动的影响[J].轴承, 1984 (3):55-64. FENG Keming. Influence of Ring Waviness on Bearing Vibration[J]. Bearing, 1984 (3):55-64. [34]孙立明, 姜韶峰, 张劲松. 高速角接触球轴承振动与套圈沟道表面波纹度的相关分析[J]. 轴承, 1997 (11):36-38. SUN Liming, JIANG Shaofeng, ZHANG Jinsong. Correlation Analysis between Vibration of High Speed Angular Contact Ball Bearing and Waviness of Raceway Surface[J]. Bearing, 1997 (11):36-38. [35]KANKAR P K, SHARMA S C, HARSHA S P .Nonlinear Vibration Signature Analysis of a High Speed Rotor Bearing System due to Race Imperfection[J]. ASME Journal of and Nonlinear Dynamics Computational, 2012, 7(1):11-14. [36]李云彬. 沟道表面缺陷对圆柱滚子轴承振动特性的影响机理研究[D].洛阳:河南科技大学, 2019. LI Yunbin. Study on Influence Mechanism of Rolling Surface Defects on Vibration Characteristics of Cylindrical Roller Bearings[D]. Luoyang:Henan University of Science and Technology, 2019. [37]时博阳. 实测波纹度圆柱滚子轴承的动力学建模及波数识别方法研究[D]. 重庆:重庆大学, 2018. SHI Boyang. Study on Dynamic Modeling of Cylindrical Roller Bearings with Real Waviness and Waviness Order Prediction Method[D]. Chongqing:Chongqing University, 2018. [38]LIU Y Q, CHEN Z G, LI W, et al. Dynamic Analysis of Tranction Motor in a Locomotive Considering Surface Waviness on Races of a Motor Bearing[J]. Railway Engineering Science, 2021, 29 (4):379-393. [39]李彦, 张旭, 杨柳. 影响角接触球轴承沟道表面波纹度的因素分析[J]. 轴承, 2015(7):29-30. LI Yan, ZHANG Xu, YANG Liu. Analysis of Factors Affecting Channel Surface Waviness of Angular Contact Ball Bearing[J]. Bearing, 2015(7):29-30. [40]于长友,赵扬,田世玲. 风电增速齿轮箱轴承套圈沟道波纹度的控制方法[J]. 轴承, 2020(6):25-26. YU Changyou, ZHAO Yang, TIAN Shiling. Control Method of Bearing Ring Raceway Waviness of Wind Power Growth Gearbox[J]. Bearing, 2020(6):25-26. [41]尹龙, 赵波, 郭星晨, 等. 超声辅助内圆磨削40Cr15Mo2VN轴承套圈的试验研究[J]. 中国机械工程,2021, 32(11):1172-1181. YIN Long, ZHAO Bo, GUO Xingchen, et al. Experimental Research on Ultrasonic Assisted Internal Grinding of 40Cr15Mo2VN Bearing Rings[J]. China Mechanical Engineering, 2021, 32 (11):1172-1181. [42]VIITALA R. Minimizing the Bearing Inner Ring Roundness Error with Installation Shaft 3D Grinding to Reduce Rotor Subcritical Response[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 30:140-148. [43]郭浩, 雷建中, 扈林庄. 滚动轴承接触疲劳失效的影响因素及其研究现状[J]. 失效分析与预防, 2019, 14(3):206-210. GUO Hao, LEI Jianzhong, HU Linzhuang. Influencing Factors of Contact Fatigue Failure of Rolling Bearings and Their Research Status[J]. Failure Analysis and Prevention, 2019, 14 (3):206-210. [44]KAZUYA H, TAKESHI F, NORIMASA T, et al. Study of Rolling Contact Fatigue of Bearing Steels in Relation to Various Oxide Inclusions[J]. Materials and Design, 2011, 32:1605-1611. [45]GUETARD G, RIVERA D C. Formation of Oxide under Rolling Contact Fatigue[J]. Tribology International, 2016, 95:262-266. [46]MAKINOA T, NEISHIA Y, SHIOZAWAB D, et al. Rolling Contact Fatigue Damage from Artificial Defects and Sulphide Inclusions in High Strength Steel[J]. Procedia Structural Integrity, 2017, 7:468-475. [47]孙钦贺. 高碳铬钢制轴承套圈热处理过程中产生的缺陷分析[J]. 轴承热处理, 2015(11):48-49. SUN Qinhe. Defect Analysis of High Carbon Chromium Steel Bearing Ring during Heat Treatment[J]. Bearing Heat Treatment, 2015(11):48-49. [48]孙钦贺. 圆锥滚子轴承套圈热处理质量控制[J]. 失效分析, 2016(2):121-124. SUN Qinhe. Quality Control of Heat Treatme of Tapered Roller Bearing rings[J]. Failure Analysis, 2016(2):121-124. [49]LI S H, YUAN X H, JIANG W, et al. Effects of Heat Treatment Influencing Factors on Microstructure and Mechanical Properties of a Low-carbon Martensitic Stainless Bearing Steel[J]. Materials Science & Engineering A, 2014, 605:229-235. [50]WU H Y, HAN D X, DU Y, et al. Effect of Initial Spheroidizing Microstructure after Quenching and Tempering on Wear and Contact Fatigue Properties of GCr15 Bearing Steel[J]. Materials Today Communications, 2022, 30:103152. [51]范文明, 果小军, 李朋, 等. 铁路货车用352226X2-2RZ型轴承内圈剥离原因分析[J]. 铁道车辆, 2020, 58(8):1-4. FAN Wenming, GUO Xiaojun, LI Peng, et al. Cause Analysis of Inner Ring Peeling of 35226X2-2RZ Bearing for Railway Freight Cars[J]. Railway Vehicles, 2020, 58 (8):1-4. [52]张祁泳.轴承套圈磨削热损伤的形成与预防探讨[J]. 哈尔滨轴承, 2009, 30(4):29-35. ZHANG Qiyong. Study on Formation and Precaution of Grinding Thermal Damage to Bearing Rings[J]. Journal of Harbin Bearing, 2009, 30(4):29-35. [53]李迎丽,孙丽杰,赵燕,等. 高温钢轴承套圈沟道磨削烧伤控制技术研究[J]. 失效分析与预防, 2017, 12(6):348-353. LI Yingli, SUN Lijie, ZHAO Yan, et al. Control Technology of Raceway Grinding Burn of High-temperature Steel Bearing Bings[J]. Failure Analysis and Prevention, 2017, 12 (6):348-353 [54]王墨航. 基于机器视觉的车用轴承套圈外表面缺陷检测系统[D]. 杭州:浙江科技学院, 2020. WANG Mohang. A Vehicle Bearing Ring Surface Defect Detection System Based on Machine Vision[D]. Hangzhou:Zhejiang University of Science and Technology, 2020. [55]SPINOLS C G, CANERO J, MORENO-ARANDA G, et al. Real-time Image Processing for Edge Inspection and Defect Detection in Stainless Steel Production Lines[C]∥IEEE International Conference on Imaging Systems and Techniques. Batu Ferringhi: IEEE, 2011:170-175. [56]兰叶深, 刘文军, 毛建辉. 基于视觉显著性的轴承表面缺陷检测算法的研究[J]. 计算机与信息技术, 2020, 9(19):1-3. LAN Yeshen, LIU Wenjun, MAO Jianhui. Research on Bearing Surface Defect Detection Algorithm Based on Visual Saliency[J]. Computer and Information Technology, 2020, 9 (19):1-3. [57]吴义权. 轴承外圈表面缺陷检测与分类方法研究[D]. 成都:电子科技大学, 2019. WU Yiquan. Research on Detection and Classification of Bearing Outer Ring Surface Defects[D]. Chengdu:University of Electronic Science and Technology, 2019. [58]张袁祥. 基于机器视觉的列车滚子轴承表面缺陷检测[D]. 包头:内蒙古科技大学, 2020. ZHANG Yuanxiang. Detection of Surface Defects of Train Roller Bearings Based on Machine Vision[D]. Baotou:Inner Mongolia University of Science and Technology, 2020. [59]BASTAMI A R, VAHID S. Estimating the Size of Naturally Generated Defects in the Outer Ring and Roller of a Tapered Roller Bearing Based on Autoregressive Model Combined with Envelop Analysis and Discrete Wavelet Transform[J]. Measurement, 2020, 159:107767. [60]LIU Z M, BAI X T, SHI H T, et al. A Recognition Method for Crack Position on the Outer Ring of Full Ceramic Bearing Based on the Synchronous Root Mean Square Difference[J]. Journal of Sound and Vibration, 2021, 515:116493. [61]VRCEK A, HULTQVIST T, JOHANNESSON T, et al. Micro-pitting and Wear Characterization for Different Rolling Bearing Steels:Effect of Hardness and Heat Treatments[J]. Wear, 2020, 458/459:203404. [62]肖爱武. 热处理对机床轴承用不锈钢组织和力学性能的影响[J]. 热加工工艺, 2017, 46(4):200-203. XIAO Aiwu. Effect of Heat Treatment on Microstructure and Mechanical Properties of Stainless Steel for Machine-tool Bearing[J]. Hot Working Process, 2017, 46 (4):200-203. [63]LIAN J L, ZHENG B R, WANG F F, et al. Evolution of Carbides on Surface of Carburized M50NiL Bearing Steel[J]. Journal of Iron and Steel Research International, 2018, 25(11):1198-1211. [64]SU Y X, WANG X, YU X F, et al. Effect of Deep Tempering on Microstructure and Hardness of Carburized M50NiL Steel[J]. Journal of Materials Research and Technology, 2021, 14:1080-1088. [65]HUANG C, ZHANG C, JIANG L, et al. Isothermal Heat Treatment of a Bearing Steel for Improved Mechanical Properties[J]. Journal of Alloys and Compounds, 2016, 660:131-135. [66]KUMAR R A, ALPHONSA J, PRAKASH R A, et al. Plasma Nitriding of AISI 52100 Ball Bearing Steel and Effect of Heat Treatment on Nitrided Layer[J]. Bulletin of Materials Science, 2011, 34(1):153-159. [67]钟世胜,王世胜. 轴承钢[M]. 北京:冶金工业出版社, 2002. ZHONG Shisheng, WANG Shisheng. Bearing Steel[M]. Beijing:Metallurgical Industry Press, 2002. [68]WANG Y H, YANG Z N, ZHANG F C, et al. Microstructures and Properties of a Novel Carburizing Nanobainitic Bearing Steel[J]. Materials Science and Engineering:A, 2020, 77:1-8. [69]刘潇.高铁轴承套圈渗碳热处理仿真技术及工艺研究[D]. 北京:北京交通大学, 2020. LIU Xiao. Research on Simulation Technology and Process of Carburizing Heat Treatment for Bearing Rings of High-speed Rail[D]. Beijing:Beijing Jiaotong University, 2020. [70]栾伟玲, 涂善东.喷丸表面改性技术的研究进展[J]. 中国机械工程, 2005, 16(15):1405-1409. LUAN Weiling, TU Shandong.Recent Trends on Surface Modification Technology of Shot Peening[J]. China Mechanical Engineering, 2005, 16 (15):1405-1409. [71]刘晓初,温溢恒,梁忠伟,等.轴承钢丸直径配比对强化研磨内圈沟道面硬度及形貌的影响[J]. 机床与液压, 2017, 45(3):123-126. LIU Xiaochu, WEN Yiheng, LIANG Zhongwei, et al. Effect of Bearing Steel Balls Diameter Ratio for Surface Hardness and Morphology of Bearing Ring in Reinforced Grinding Processing[J]. Machine Tool and Hydraulic, 2017, 45 (3):123-126. [72]刘晓初,关水建,黄骏,等.基于强化研磨轴承套圈表面化学成分分析[J]. 广州大学学报(自然科学版), 2015, 14(1):65-68. LIU Xiaochu, GUAN Shuijian, HUANG Jun, et al. Analysis of Surface Chemical Composition of Bearing Ring Based on Enhanced Grinding[J]. Journal of Guangzhou University (Natural Science Edition), 2015, 14(1):65-68. [73]萧金瑞, 刘晓初, 梁忠伟, 等. 强化研磨微纳加工参数对轴承套圈沟道表面硬度的影响[J]. 精密成形工程, 2020, 12(4):112-118. XIAO Jinrui, LIU Xiaochu, LIANG Zhongwei, et al. Influence of Strengthen Grinding Micro-nano Machining Parameters on Surface Hardness of Bearing Ring Raceway[J]. Journal of Netshape Forming Engineering, 2020, 12(4):112-118. [74]TORKAMANI H, VRCEK A, LARSSON R, et al. Mcrio-pitting and Wear Damage Characterization of Through Hardened 100Gr6 and Surface Induction Hardened C56E2 Bearing Steels[J]. Wear, 2022, 492/493:204218. [75]王德祥,葛培琪,毕文波,等.滚动轴承内圈沟道表层残余应力分布的实验研究[J].华中科技大学学报(自然科学版), 2015, 43(3):12-16. WANG Dexiang, GE Peiqi, BI Wenbo, et al. Experimental Study on Residual Stress Distribution in Surface Layer of Rolling Bearing Inner Ring Raceway[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(3):12-16. [76]王德祥.滚动轴承内圈沟道磨削残余应力研究[D]. 济南:山东大学, 2015. WANG Dexiang. Study on Grinding Residual Stress in Rolling Bearing Inner Ring Raceway[D]. Jinan:Shandong University,2015. [77]SHAH S H, NELIAS D, ZAINULABDEIN M, et al. Numerical Simulation of Grinding Induced Phase Transformation and Residual Stresses in AISI-52100 Steel[J]. Finite Elements in Analysis and Design, 2012, 61:1-11. [78]陶亮,陈海虹,陈超,等.轴承钢硬态切削表面残余应力的研究[J]. 工具技术, 2018, 52(12):80-83. TAO Liang, CHEN Haihong, CHEN Chao, et al. Investigation of Surface Residual Stresses in Hard Machining of Bearing Steel[J]. Tool Technology, 2018, 52(12):80-83. [79]ZHANG F Y, DUAN C Z, SUN W, el at. Effects of Cutting Conditions on the Microstructure and Residual Stress of White and Dark Layers in Cutting Hardened Steel[J]. Journal of Mater Process Technol, 2019, 26(6):599-611. [80]LIU M, JUN-ICHIRO T, AKIRA T. Effect of Tool Nose Radius and Tool Wear on Residual Stress Distribution in Hard Turning of Bearing Steel[J]. Journal of Materials Processing Techno-logy, 2004,150(3):234-241. [81]JOUINI N, REVEL P, THOQUENNE G. Influence of Surface Integrity on Fatigue Life of Bearing Rings Finished by Precision Hard Turning and Grinding[J]. Journal of Manufacturing Processes, 2020, 57:444-451. [82]高二威. 精密磨削表面残余应力离散度试验研究与数值分析[D]. 上海:上海交通大学,2008. GAO Erwei. Experimental Study and Numerical Analysis of Surface Residual Stress Dispersion in Precision Grinding[J]. Shanghai:Shanghai Jiaotong University, 2008. [83]葛培琪,毕文波,郑传栋.精研加工参数对轴承沟道表面残余应力影响[J]. 金刚石与磨料磨具工程, 2016, 36(5):42-45. GE Peiqi , BI Wenbo, ZHENG Chuandong. Influence of Superfinishing Parameters on Residual Stress of Bearing Raceway[J]. Diamond and Abrasive Tool Engineering, 2016, 36 (5):42-45. [84]SUGINO K, MIYAMOTO K, NAGUMO M, et al. Structural Alterations of Bearing Steels under Rolling Contact Fatigue[J]. Transactions ISIJ, 1970, 10:98-111. [85]OSTERLUND R, VINGSBO O. Phase-changes in Fatigued Ball-bearings[J]. Metallurgical and Materials Transactions A—Physical Metallurgy and Materials Science, 1980, 11:701-707. [86]SMELO V A V, SCHWEDT A, LING W, et al. Electron Microscopy Investigations of Microstrctural Alterations due to Classical Rolling Contact Fatigue(RCF) in Martensitic AISI 52100 Bearing Steel[J]. International Journal of Fatigue, 2017, 97:142-154. [87]SWAHN H, BECKER P, VINGSBO O. Martensite Decay during Rolling Contact Fatigue in Ball Bearings[J]. Metallurgical and Materials Transactions A, 1976, 7(7):1099-1100. [88]KANG J H, HOSSEINKHANI B, VEGTER R H, et al. Modelling Dislocation Assisted Tempering during Rolling Contact Fatigue in Bearing Steels[J]. International Journal of Fatigue, 2015, 75:115-125. [89]KANG J H, KIM J W, KANG J Y, et al. Mulltiscale Study on the Dark-etching Region due to Rolling Contact Fatigue of 0.57C-Bearing Steel[J]. Acta Materialia, 2022, 226:117666. [90]潘光永. GCr15轴承套圈模锻成形工艺模拟研究[J]. 特种铸造及有色合金, 2018, 8(1):29-35. PAN Guangyong. Die Forging Simulation of GCr15 Bearing Ring[J]. Special Casting and Nonferrous Alloys, 2018, 8(1):29-35. [91]JIANG H W, SONG Y R, WU Y C, et al. Macrostructure, Microstructure and Mechanical Properties Evolution during 8Gr4Mo4V Steel Roller Bearing Inner Ring Forging Process[J]. Materials Science & Engineering A, 2020, 798:140196. [92]JIANG H W, SONG Y R, WU Y C, et al. Microstructure Evolution and Mechanical Anisotropy of M50 Steel Ball Bearing Rings during Multi-stage Hot Forging[J].Chinese Journal of Aeronautics, 2021, 34(11):254-266. [93]华林, 钱东升. 轴承环轧制成形理论和技术[J]. 机械工程学报, 2014, 50(16):70-76. HUA Lin, QIAN Dongsheng. Ring Rolling Forming Theory and Technology for Bearing[J]. Journal of Mechanical Engineering, 2014, 50(16):70-76. [94]FENG W, QIAN D, HU L, et al. The Effect of Prior Cold Rolling on the Carbide Dissolution Precipitation and Dry Wear Behaviors of M50 Bearing Steel[J]. Tribology International, 2019,132:253-264. [95]KALASHAMI A G, KERMANPUR A, NAJAFIZADEH A, et al. Development of a High Strength and Ductile Nb-bearing Dual Phase Steel by Cold-rolling and Ntercritical Annealing of the Ferrite-martensite Microstructures[J].Materials Science and Engineering A,2016,658:355-366. [96]吴玉成,刘明,付中元,等.G80Cr4Mo4V钢角接触球轴承套圈锻件辗扩工艺改进[J]. 轴承, 2021(1):35- 40. WU Yucheng, LIU Ming, FU Zhongyuan, et al. Improvement of Rolling Process of G80Cr4Mo4V Steel Angular Contact Ball Bearing Ring Forging[J]. Bearing, 2021(1):35-40. [97]米振莉,张小垒,李志超,等.热处理工艺对高碳铬轴承钢组织和性能的影响[J].材料热处理学报, 2015, 36(7):199-124. MI Zhenli, ZHANG Xiaolei, LI Zhichao, et al. Effect of Heat Treatment Process on Microstructure and Properties of High Carbon Chromium Bearing Steel[J]. Transactions of Material and Heat Treatment, 2015, 36 (7):199-124. [98]LIAN J L, ZHENG L J, WANG F F. Evolution of Carbides on Surface of Carburized M50NiL Bearing Steel[J]. Journal of Iron and Steel Research International, 2018, 25:1198-1211. [99]刘玮,李志南,李国强,等.激光喷丸强化轴承用CuNiCrSi合金残余应力及疲劳裂纹分析[J].应用激光,2020,40(2):232-237. LIU Wei,LI Zhinan,LI Guoqiang,et al. Residual Stress and Fatigue Crack Analysis of CuNiCrSi Alloy for Laser Shot Peening Strengthened Bearings[J]. Applied Laser,2020,40(2):232-237. [100]OLIVER M, BEREND D, THILO G. Hybrid Machining of Roller Bearing Inner Rings by Hard Turning and Deep Rolling[J]. Journal of Materials Processing Technology, 2016, 230:211-216. [101]ZHANG X, LIU W T, WANG S R, et al. Effect of Ultrasonic Rolling on Properties of GCr15 Bearing Steel[J]. Journal of Physics:Conference Series, 2022, 2174:012044. [102]BOUZAKIS K D, VIDAKIS N, LONTOS A, et al. Implementation Low Temperature-deposited Coating Fatigue Parameters in Commercial Roller Bearings Catalogues[J]. Surface & Coatings Technology, 2000, 133(11):489-496. [103]黄志强,涂小芳,王晓凤,等.高速牙轮钻头轴承表面强化技术实验研究[J].西南石油大学学报(自然科学版), 2009, 31(2):143-145. HUANG Zhiqiang, TU Xiaofang, WANG Xiaofeng, et al. Experimental Study on Surface Strengthening Technology of High Speed Cone Bit Bearing[J]. Journal of Southwest Petroleum University (Natural Science Edition), 2009, 31(2):143-145. [104]雷声.轴承表面的激光相变硬化关键技术研究[D].合肥:合肥工业大学, 2010. LEI Sheng. Research on the Key Technologies of Laser Transformation Hardening for Bearing Surface of GCr15 Steel[D]. Hefei:Hefei Polytechnic University, 2010. [105]罗燕,刘义翔,班君,等.不同处理工艺轴承套圈的近表层硬度及残余应力[J].理化检验—物理分册,2017, 53(7):477-481. LUO Yan, LIU Yixiang, BAN Jun, et al. Hardness and Residual Stress of Near Surface of Bearing Rings with Different Treatment Processes[J]. Physical and Chemical Inspection—Physical Volume, 2017, 53(7):477-481. [106]CARCUA M V, LOPES J C, DINIZ A E, et al. Grinding Performance of Bearing Steel Using MQL under Different Dilutions and Wheel Cleaning for Green Manufacture[J]. Journal of Cleaner Production, 2020, 257:120376. [107]NADOLNY K, KIERAS' S. New Approach for Cooling and Lubrication in Dry Machining of the Example of Internal Cylindrical Grinding of Bearing Rings[J]. Sustainable Materials and Technologies, 2020, 24:e00166. [108]BINGI S, BABU N R. Role of Surface Topography of On-line Laser Dressed Aluminium Oxide Wheel on Its Performance in Internal Grinding of Bearing Steel Parts[J]. Optics and Laser Technology, 2019, 119:105595. [109]CAO Y, ZHAO B, DING W F, et al. On the Tool Wear Behavior during Ultrasonic Vibration-assisted form Grinding with Alumina Wheels[J]. Ceramics International, 2021, 47:26465-26474. [110]ZHANG M H, PANG Z X, JIA Y X, et al. Understanding the Machining Characteristic of Plain Weave Ceramic Matrix Composite in Ultrasonic-assisted Grinding[J]. Ceramics International, 2022, 48:5557-5573. [111]DING K, LI Q L, LEI W N, et al. Design of a Defined Grain Distribution Brazed Diamond Grinding Wheel for Ultrasonic Assisted Grinding and Experimental Verification[J]. Ultrasonics, 2022, 118:106577. [112]UMBRELLO D, MICARI F, JAWAHIR I S. The Effect of Cryogenic Cooling on Surface Integrity in Hard Machining:a Comparison with Dry Machining[J]. CIRP Annals—Manufacturing Technology, 2012, 61(1):103-106. [113]BICEK M, DUMONT F, COURBON C, et al. Cryogenic Machining as an Alternative Turning Process of Normalized and Hardened AISI 52100 Bearing Steel[J]. Journal of Materials Processing Technology, 2012, 212:2609-2618. [114]CETINDAG H A, CICEK A, UCAK N. The Effect of CryoMQL Conditions on Tool Wear and Surface Integrity in Hard Turning of AISI 52100 Bearing Steel[J]. Journal of Manufacturing Processes, 2020, 56:463-473. [115]KIM D M, KIM H I, PARK H W. Tool Wear, Economic Costs, and CO2 Emissions Analysis in Cryogenic Assisted Hard-turning Process of AISI 52100 Steel[J]. Sustainable Materials and Technologies, 2021, 30:e00349. [116]张硕,王海波,张冰,等.高能电脉冲对淬火态GCr15钢切削性能的影响[J].稀有金属材料与工程, 2018, 47(2):574-580. ZHANG Shuo, WANG Haibo, ZHANG Bing, et al. Effect of Electropulsing Assisted Cutting Process on Cutting Properties of Quenched GCr15 Bearing Steel[J]. Rare Metal Materials and Engineering, 2018, 47(2):574-580. [117]中国轴承工业协会. 高端轴承技术路线图[M].北京:中国科学技术出版社, 2018. China Bearing Industry Association. High-endBearing Technology Roadmap[M].Beijing: Science and Technology of China Press, 2018. [118]马芳, 刘璐. 航空轴承技术现状与发展[J]. 航空发动机, 2018, 44(1):85-90. MA Fang, LIU Lu. Present Situation and Development of Aviation Bearing Technology[J]. Aero Engine, 2018, 44(1):85-90. |
[1] |
HU Chao, LIU Zuo-Min.
Research on Rolling Bearing’s Heathcote’s Stick-slip Model Based on Materials Compatibility
[J]. J4, 201016, 21(16): 1969-1973.
|
[2] | MA Qiaoying, YANG Shaopu, LIU Yongqiang, . Vibration and Lubrication Characteristics of Railway Vehicle Axle Box Bearings under Wheel-rail Excitation [J]. China Mechanical Engineering, 2024, 35(04): 580-590. |
[3] | TANG Hao, TAN Jianjun, LI Hao, ZHU Caichao, YE Wei, SUN Zhangdong. Research on Dynamic Modeling and Decoupling Methods of Planetary Gear Trains in Wind Turbine Gearboxes with Journal Bearings [J]. China Mechanical Engineering, 2024, 35(04): 591-601. |
[4] | ZHANG Jinyang, XU Weichun, WANG Xiaohan, JIANG Xiaohui, GAO Shan. Study on Influences of Milling Process Optimization on Residual Stress Distribution for Machining Nickel-based Superalloys [J]. China Mechanical Engineering, 2024, 35(04): 624-635. |
[5] | LI Yingchun, NIE Aonan, YANG Mingxuan, ZHU Dingkang, QIU Ming, YANG Gengsheng. Research on Thermal Characteristics of Auxiliary Bearing in AMBs and Friction Reduction Design [J]. China Mechanical Engineering, 2024, 35(04): 646-655. |
[6] | LI Yanle, PAN Zhongtao, QI Xiaoxia, CUI Weiqiang, CHEN Jian, LI Fangyi. Effect of Heat Treatment on Temperature and Stress Distribution during Laser Cladding of 316L Steels [J]. China Mechanical Engineering, 2024, 35(04): 666-677. |
[7] | WANG Dong, CHEN Lei, ZHANG Zhipeng. Study on Force Model and Surface Integrity of Cylindrical Grinding 18CrNiMo7-6 Steels [J]. China Mechanical Engineering, 2024, 35(03): 381-393. |
[8] | CHEN Lian, WEI Xiaohu, CAO Qiang, ZHOU Yan, YANG Yingxin, HU Chuan, ZHAO Zhijie, WU Bin. Mechanism of Rock Breaking by Convex Non-planar PDC Cutter and Its Applications in Gravel-bearing Formation [J]. China Mechanical Engineering, 2024, 35(02): 371-379. |
[9] | GOU Ruijie, ZHANG Xiaofeng, ZHANG Hongbin, YAO Jun, LI Xun. Effects of Tool Wear on Milling Surface Integrity and Fatigue Properties of Allvac 718Plus Superalloy [J]. China Mechanical Engineering, 2023, 34(24): 2920-2926. |
[10] | LI Xiaorui, ZHAO Wei, LI Hao, SHI Weiqi, HE Ning. Experimental Study of High-speed Turning of Hardened Bearing Steels under High-pressure Cryogenic CO2 Jet Cooling Conditions [J]. China Mechanical Engineering, 2023, 34(24): 2975-2985. |
[11] | WANG Yatao, QIU Ming, ZHANG Jiaming, WANG Huijie. Cause Analysis on Multi-point Contact between Steel Ball and Raceway of Four-point Contact Ball Bearings [J]. China Mechanical Engineering, 2023, 34(23): 2794-2804. |
[12] | WU Zegang, HOU Yongfeng, MIAO Qing, LI Jing, ZHANG Dinghua, LUO Ming, . Study on Surface Integrity in milling of TC11 Titanium Impellers [J]. China Mechanical Engineering, 2023, 34(23): 2862-2872. |
[13] | TANG Yang, ZHANG Wudi, ZHANG Yulin, WANG Yuan, . Simulation and Experimental Study on Slip Bearing Performance and Pipe Wall Damage Characteristics of Pipeline Plugging Robots [J]. China Mechanical Engineering, 2023, 34(22): 2758-2771. |
[14] | XU Lixin, XIA Chen, YANG Bo. Analysis and Test on Dynamic Transmission Errors of RV Reducers under Load Conditions [J]. China Mechanical Engineering, 2023, 34(18): 2143-2152. |
[15] | QIN Guohao, ZHANG Kai, DING Kun, HUANG Fengfei, ZHENG Qing, DING Guofu, . Dynamic Wide Convolutional Residual Network for Bearing Fault Diagnosis Method [J]. China Mechanical Engineering, 2023, 34(18): 2212-2221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||