[1]郭占广,尹帅,谢敬玲,等.基于胶囊神经网络的轴承故障诊断方法研究[J].自动化与仪表,2022,37(12):49-53.
GUO Zhanguang, YIN Shuai, XIE Jingling, et al. Research on Bearing Fault Diagnosis Method Based on Capsule Neural Network[J]. Automation & Instrumentation, 2022, 37(12):49-53.
[2]樊红卫,张旭辉,曹现刚,等.智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J].振动与冲击,2020,39(24):194-204.
FAN Hongwei, ZHANG Xuhui, CAO Xiangang, et al. Research Status and Prospect of Fault Diagnosis of Chinas Coal Mine Machines under Background of Intelligent Mine[J]. Journal of Vibration and Shock, 2020, 39(24):194-204.
[3]赵磊,张永祥,朱丹宸.复杂装备滚动轴承的故障诊断与预测方法研究综述[J].中国测试,2020,46(3):17-25.
ZHAO Lei, ZHANG Yongxiang, ZHU Danchen. Review on Rolling Bearing Fault Diagnosis and Prognostic for Complex Equipment[J]. China Mea-surement & Test, 2020, 46(3):17-25.
[4]杨宇,于德介,程军圣.基于经验模态分解的滚动轴承故障诊断方法[J].中国机械工程,2004,25(10):64-67.
YANG Yu, YU Dejie, CHENG Junsheng. Roller Bearing Fault Diagnosis Method Based on EMD[J]. China Mechanical Engineering, 2004,25(10):64-67.
[5]雷亚国,贾峰,孔德同,等.大数据下机械智能故障诊断的机遇与挑战[J].机械工程学报,2018,54(5):94-104.
LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and Challenges of Machinery Intelligent Fault Diagnosis in Big Data Era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104.
[6]侯文擎,叶鸣,李巍华.基于改进堆叠降噪自编码的滚动轴承故障分类[J].机械工程学报,2018,54(7):87-96.
HOU Wenqing, YE Ming, LI Weihua. Rolling Element Bearing Fault Classification Using Improved Stacked De-noising Auto-encoders[J]. Journal of Mechanical Engineering, 2018, 54(7):87-96.
[7]赵光权,葛强强,刘小勇,等.基于DBN的故障特征提取及诊断方法研究[J].仪器仪表学报,2016,37(9):1946-1953.
ZHAO Guangquan, GE Qiangqiang, LIU Xiaoyong. Fault Feature Extraction and Diagnosis Method Based on Deep Belief Network[J]. Chinese Journal of Scientific Instrument, 2016, 37(9):1946-1953.
[8]曲建岭,余路,袁涛,等.基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J].仪器仪表学报,2018,39(7):134-143.
QU Jianling, YU Lu, YUAN Tao, et al. Adaptive Fault Diagnosis Algorithm for Rolling Bearings Based on One-dimensional Convolutional Neural Network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7):134-143.
[9]ZHANG Wei, LI Chuanhao, PENG Gaoliang, et al. A Deep Convolutional Neural Network with New Training Methods for Bearing Fault Diagnosis under Noisy Environment and Different Working Load[J]. Mechanical Systems and Signal Processing, 2018, 100:439-453.
[10]赵小强,张青青.改进Alexnet的滚动轴承变工况故障诊断方法[J].振动.测试与诊断,2020,40(3):472-480.
ZHAO Xiaoqiang, ZHANG Qingqing.Improved Alexnet Based Fault Diagnosis Method for Rolling Bearing under Variable Conditions[J]. Journal of Vibration,Measurement & Diagnosis, 2020, 40(3):472-480.
[11]赵宇凯,徐高威,刘敏.基于VGG16迁移学习的轴承故障诊断方法[J].航天器环境工程,2020,37(5):446-451.
ZHAO Yukai, XU Gaowei, LIU Min. Method for Fault Diagnosis of Bearing Based on Transfer Learning with VGG16 Model[J]. Spacecraft Environment Engineering, 2020, 37(5):446-451.
[12]温江涛,张鹏程,孙洁娣,等.残差卷积自编码网络无监督迁移轴承故障诊断[J].中国机械工程,2022,33(14):1707-1716.
WEN Jiangtao, ZHANG Pengcheng, SUN Jiedi, et al. Unsupervised Transfer Learning with Residual Convolutional Autoencoder Networks for Bearing Fault Diagnosis[J]. China Mechanical Engineering, 2022, 33(14):1707-1716.
[13]HE Kaiming, ZHANG Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Seattle, 2016:770-778.
[14]赵靖,杨绍普,李强,等.一种残差注意力迁移学习方法及其在滚动轴承故障诊断中的应用[J].中国机械工程,2023,34(3):332-343.
ZHAO Jing, YANG Shaopu, LI Qiang, et al. A New Transfer Learning Method with Residual Attention and Its Applications on Rolling Bearing Fault Diagnosis[J]. China Mechanical Engineering, 2023, 34(3):332-343.
[15]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely Connected Convolutional Networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017:4700-4708.
[16]熊鹏,汤宝平,邓蕾,等.基于动态加权密集连接卷积网络的变转速行星齿轮箱故障诊断[J].机械工程学报,2019,55(7):52-57.
XIONG Peng, TANG Baoping, DENG Lei, et al. Fault Diagnosis for Planetary Gearbox by Dynamically Weighted Densely Connected Convolutional Networks[J]. Journal of Mechanical Engineering, 2019, 55(7):52-57.
[17]吴静然,丁恩杰,崔冉,等.采用多尺度注意力机制的旋转机械故障诊断方法[J].西安交通大学学报,2020,54(2):51-58.
WU Jingran, DING Enjie, CUI Ran, et al. A Diagnostic Approach for Rotating Machinery Using Multi-scale Feature Attention Mechanism[J]. Journal of Xian Jiaotong University, 2020, 54(2):51-58.
[18]赵小强,张亚洲.利用改进卷积神经网络的滚动轴承变工况故障诊断方法[J].西安交通大学学报,2021,55(12):108-118.
ZHAO Xiaoqiang, ZHANG Yazhou. Improved CNN-Based Fault Diagnosis Method for Rolling Bearings under Variable Working Conditions[J]. Journal of Xian Jiaotong University,2021,55(12):108-118.
[19]董绍江,裴雪武,吴文亮,等.基于多层降噪技术及改进卷积神经网络的滚动轴承故障诊断方法[J].机械工程学报,2021,57(1):148-156.
DONG Shaojiang, PEI Xuewu, WU Wenliang, et al. Rolling Bearing Fault Diagnosis Method Based on Multilayer Noise Reduction Technology and Improved Convolutional Neural Network[J]. Journal of Mechanical Engineering, 2021, 57(1):148-156.
[20]GLOROT X, BORDES A, BENGIO Y. Deep Sparse Rectifier Neural Networks[C]∥Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings. Fort Lauderdale, 2011:315-323.
[21]IOFFE S, SZEGEDY C. Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]∥International Conference on Machine Learning. Pmlr, 2015:448-456.
[22]LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective Kernel Networks[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019:510-519.
[23]HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation Networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018:7132-7141.
[24]KIMOTHO J K, LESSMEIER C, SEXTRO W, et al. Condition Monitoring of Bearing Damage in Electromechanical Drive Systems by Using Motor Current Signals of Electric Motors:a Benchmark Data Set for Data-driven Classification[C]∥PHM Society European Conference. Bilbao, 2016, 3(1):152-156.
[25]ZHANG Kai, TANG Baoping, DENG Lei, et al. A Hybrid Attention Improved ResNet Based Fault Diagnosis Method of Wind Turbines Gearbox[J]. Measurement, 2021, 179:109491.
[26]LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based Learning Applied to Document Recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[27]SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-scale Image Recognition[C]∥lnternational Conference on Learning Representations. San Diego, 2015:1-14.
[28]ZHANG Wei, PENG Gaoliang, LI Chuanhao, et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-noise and Domain Adaptation Ability on Raw Vibration Signals[J]. Sensors, 2017, 17(2):425.
|