Previous Articles Next Articles
DU Jiayou1;GUO Wangcheng2;WANG Ruijin2;ZHU Zefei1,2
Online:2018-04-25
Published:2018-04-24
Supported by:杜加友1;郭望城2;王瑞金2;朱泽飞1,2
基金资助:CLC Number:
DU Jiayou1;GUO Wangcheng2;WANG Ruijin2;ZHU Zefei1,2. Investigation on a Negative Magnetophoretic-inertial Combined Sortor for Non-magnetic Microparticles[J]. China Mechanical Engineering.
杜加友1;郭望城2;王瑞金2;朱泽飞1,2. 非磁性微粒的负磁泳-惯性组合分选研究[J]. 中国机械工程.
| [1]DANOVA M, TORCHIO M, MAZZINI G. Isolation of Rare Circulating Tumor Cells in Cancer Patients: Technical Aspects and Clinical Implications[J]. Expert Review of Molecular Diagnostics, 2011, 11(5): 473-485. [2]JO K, CHEN Y L, PABLO J J, et al. Elongation and Migration of Single DNA Molecules in Microchannels Using Oscillatory Shear Flows[J]. Lab on a Chip, 2009, 9(16):2348-2355. [3]LEE M G, CHOI S, PARK J K. Inertial Separation in a Contraction-expansion Array Microchannel[J]. Journal of Chromatography A, 2011, 1218(27): 4138-4143. [4]TSAI C H, LIN C H, FU L M, et al. High Performance Microfluidic Rectifier Based on Sudden Expansion Channel with Embedded Block Structure[J]. Biomicrofluidics, 2012, 6(2): 241068-241089. [5]WANG R J. Hydrodynamic Trapping of Particles in an Expansion-contraction Microfluidic Device[J]. Abstract and Applied Analysis, 2013, 2013: 496243. [6]DI C D, IRIMIA D, TOMPKINS R G, et al. Continuous Inertial Focusing, Ordering and Separation of Particles in Microchannels[J]. Proceedings of the National Academy of Science, 2007,104(48):18892-18897. [7]MARTEL J M, TONER M. Inertial Focusing Dynamics in Spiral Microchannels[J]. Physics of Fluids, 2012, 24(3): 032001. [8]XIANG N, CHEN K, DAI Q, et al. Inertia-induced Focusing Dynamics of Microparticles throughout a Curved Microfluidic Channel[J]. Microfluidics and Nanofluidics, 2015,18(1):29-39. [9]ZHANG J, LI W, LI M, et al. Particle Inertial Focusing and Its Mechanism in a Serpentine Microchannel[J]. Microfluidics and Nanofluidics, 2014, 17(2):305-316. [10]OBERTI S, NEILD A, QUACH R D, et al. The Use of Acoustic Radiation Forces to Position Particles within Fluid Droplets[J]. Ultrasonics, 2009,49(1):47-52. [11]WANG R J, DU J Y, GUO W C, et al. Investigation on the Thermophoresis-coupled Inertial Sorting of Submicrometer Particles in a Microchannel[J]. Micro-Nano-scale Thermophysical Engineering, 2016, 22(1):51-65. [12]ZHANG C, KHOSHMANESH K, MITCHELL A, et al. Dielectrophoresis for Manipulation of Micro/Nano Particles in Microfluidic Systems[J]. Analytical and Bioanalytical Chemistry, 2010, 396(1):401-420. [13]LI W K, SOONG C Y, TZENG P Y, et al. Analysis of Transition and Mobility of Microparticle Photo-phoresis with Slip-flow Model[J]. Microfluidics and Nanofluidics, 2011,10(1):199-209. [14]MACIEJ Z, LEE R M, WILLIAMS P S, et al. Separations Based on Magnetophoretic Mobility[J]. Journal of Separation Science and Technology, 2002, 37(16): 3611-3633. [15]PAMME N, WILHELM C. Continuous Sorting of Magnetic Cells via On-chip Free-flow Magnetophoresis[J]. Lab Chip, 2006, 6(8):974-980. [16]吴信宇,吴慧英,胡定华.基于磁力场与速度场协同的高效微通道磁泳分离[J].中国科学: 科学技术, 2011, 41(12): 1620-1627. WU Xinyu, WU Huiying, HU Dinghua. High-efficiency Magnetophoretic Separation Based on Synergy of Magnetic Force Field and Flow Field in Microchannels[J]. Science China : Technological Sciences, 2011,41(12): 1620-1627. [17]杜晶辉,刘旭,徐小平.微流控芯片分选富集循环肿瘤细胞的研究进展[J]. 色谱 , 2014, 32(1): 7-12. DU Jinghui, LIU Xu, XU Xiaoping. Advances in Isolation and Tumor Cells in Microfluidic Chip[J]. Chinese Jounal of Chromatography, 2014, 32(1): 7-12. [18]THOMAS S, STEPHAN K, LEE M, et al. Sequential CD34 Cell Fractionation by Magnetophoresis in a Magnetic Dipole Flow Sorter[J]. The Analyst, 2010, 135(1): 62-70. [19]邓海东,李海. 磁性液体中非磁性小球与磁性纳米颗粒的相互作用及磁组装[J]. 物理学报,2013,62 (12):127501-10. DENG Donghai, LI Hai. Interaction and Assembly of Non-magnetic and Magnetic Nanoparticles Dispersed in Magnetic Field[J]. Acta Phy. Sin., 2013, 62(12): 127501-10. [20]MELISSA K, RANDALL M E, BENJAMIN B Y, et al. Formation of Ordered Cellular Structures in Suspension via Label-free Negative Magnetophoresis[J]. Nano Letters, 2009,9(5):1812 -1817. [21]ROSENSWEIG R E. Ferrohydrodynamics[M]. Cambridge: Cambridge University Press, 1985. [22]ZHU T T, MARRERO F, MAO L D. Continuous Separation of Non-magnetic Particles Inside Ferrofluids[J]. Microfluidics and Nanofluidics, 2010, 9(4/5): 1003-1009. [23]ZHU T T, LICHLYTER D J, HAIDEKKER M A, et al. Analytical Model of Microfluidic Transport of Non-magnetic Particles in Ferrofluids under the Influence of a Permanent Magnet[J]. Microfluidics and Nanofluidics, 2011, 10 (6):1233-1245. [24]CHENG R, ZHU T T, MAO L D. Three-dimensional and Analytical Modeling of Microfluidic Particle Transport in Magnetic Fluids[J]. Microfluidics and Nanofluidics, 2014,16(6):1143-1154. [25]BERKOVSKY B, BASHTOVOI V. Magnetic Fluids and Applications Handbook[M]. UNESCO, Series of Learning Materials. New York: Begell House Inc.,1996. [26]ZHOU Y L,SONG L, YU L D, et al. Inertially Focused Diamagnetic Particle Separation in Ferrofluids[J]. Microfluidics and Nanofluidics,2017, 21(1):14-23. [27]LIANG L T, XUAN X C. Diamagnetic Particle Focusing Using Ferromicrofluidics with a Single Magnet[J]. Microfluidics and Nanofluidics,2012, 13(4): 637-643. [28]ZENG J,CHEN C, VEDANTAM P, et al. Magnetic Concentration of Particles and Cells in Ferrofluid Flow through a Straight Microchannel Using Attracting Magnets[J]. Microfluidics and Nanofluidics, 2013, 15(1):49-55. [29]HEJAZIAN M, NGUYEN N T. Negative Magnetophoresis in Diluted Ferrofluid Flow[J]. Lab Chip, 2015, 15(14): 2998-3005. [30]FATEEN S K, MAGDY M. Three Dimensional Simulation of Negative-magnetophoretic Filtration of Non-magnetic Nanoparticles[J]. Chem. Eng. Res. & Des., 2015, 95(1):69-78. [31]KUMAR V, REZAI P. Multiplex Inertio-magnetic Fractionation of Magnetic and Non-magnetic Microparticles in a Microfluidic Device[J]. Microfluidics and Nanofluidics, 2017, 21(1):83-98. [32]CHENG R, ZHU T T, MAO L D. Three-dimensional and Analytical Modeling of Microfluidic Particle Transport in Magnetic Fluids[J]. Microfluidics and Nanofluidics, 2014, 16(4):1143-1154. [33]ZHU T T, CHENG R, LIU Y F, et al. Combining Positive and Megative Magnetophoreses to Separate Particles of Different Magnetic Properties[J]. Microfluidics and Nanofluidics, 2014, 17(6):973-982. [34]YAN S, ZHANG J, CHEN H Y, et al. Development of a Novel Magnetophoresis-assisted Hydrophoresis Micro-device for Rapid Particle Ordering[J]. Biomedical Microdevices, 2016, 18(54):1-9. [35]DAS S,CHAKRABORTY S, MITRA S K. Magnetohydro-dynamics in Narrow Fluidic Channels in Presence of Spatially Non-uniform Magnetic Fields: Framework for Combined Magnetohydrodynamic and Magnetophoretic Particle Transport[J]. Microfluidics and Nanofluidics, 2012, 13(5):799-807. [36]SHARPE S A. Magnetophoretic Cell Clarification[D]. Cambridge: Massachusetts Institute of Technology, 2004. [37]REN Z, HAN Y, HONG R, et al. On the Viscosity of Magnetic Fluid with Low and Moderate Solid Fraction[J]. Particuology, 2008, 6(3):191-198. [38]李强,宣益民,王健. 磁流体黏度的实验研究[J]. 工程热物理学报,2005,26(5):859-861. LI Qiang, XUAN Yimin, Wang Jian. Experimental Investigation on Viscosity of Magnetic Fluids[J]. Journal of Engineering Thermo-physics, 2005,26(5): 859-861. [39]李德才. 磁性液体理论及应用[M]. 北京:科学出版社, 2003. LI Decai. The Theory and Applications of Magnetic Fluids[M]。 Beijing: Scientific Press,2003. [40]徐晨,刘桂雄,张沛强,等. 磁流体惯性传感的磁流耦合机理及流固结构[J].光学精密工程,2008, 16(5): 965-971. XU Chen, LIU Guixiong, ZHANG Peiqiang, et al. Magnetic Fluid Coupling Mechanism of Magnetic Fluid Inertial Sensor and Its Magnetic-fluid Solid Structure[J]. Optics and Precision Engineering, 2008, 16(5): 965-971. [41]ROTH I B. Characterization and Use of Permanent Magnets with Extremely Strong Field Gradient[D]. Oslo: University of Oslo, 2009. [42]CHIU Y J, CHO S H, MEI Z, et al. Universally Applicable Three-dimensional Hydrodynamic Microfluidic Flow Focusing[J]. Lab Chip, 2013, 13(9): 1803-1809. [43]HA B H, LEE K S, JUNG J H, et al. Three- dimensional Hydrodynamic Flow and Particle Focusing Using Four Vortices Dean Flow[J], Microfluidics and Nanofluidics, 2014,17(1):647-655. [44]DANIEL R G, WESTBROOK M W, ALBERT J M, et al. Label-free Cell Separation and Sorting in Microfluidic Systems[J]. Analytical and Bioanalytical Chemistry, 2010, 397(8):3249-3267. |
| [1] |
TUN Fu-Chao, TUN Bai-Hu, ZHANG Xiu-Hua.
Numerical Simulation of Heat Transfer Performance of Paraffin Thermal-Sensitive Valve
[J]. J4, 201016, 21(16): 1921-1926.
|
| [2] | LI Yanle, PAN Zhongtao, QI Xiaoxia, CUI Weiqiang, CHEN Jian, LI Fangyi. Effect of Heat Treatment on Temperature and Stress Distribution during Laser Cladding of 316L Steels [J]. China Mechanical Engineering, 2024, 35(04): 666-677. |
| [3] | PENG Wenfei, ZHANG Cheng, LIN Longfei, HUANG Minghui, YU Feng. Modeling and Prediction of Central Damages in Cross Wedge Rolling Based on Continuous Damage Mechanics [J]. China Mechanical Engineering, 2024, 35(04): 711-720,751. |
| [4] | LI Kunhang, ZHANG Siqi, WU Wei, HU Mingzhuo, SUN Yaling, XIONG Xin, HUANG Hong. Multi-field Coupling Simulation and Analysis for Resistance Spot Welding of Three-layer Dissimilar Unequal-thickness Steels [J]. China Mechanical Engineering, 2023, 34(24): 2996-3003. |
| [5] | LUO Wenze, CHENG Huimei, LIU Hongyan, WANG Yifeng, YE Yanhong, DENG Dean. Numerical Simulation of Residual Stress and Welding Deformation for High Strength Steel Q960E Butt-welded Joints [J]. China Mechanical Engineering, 2023, 34(17): 2095-2105,2141. |
| [6] | XU Xiang, ZHANG Yilun, MEI Zheng, LI Jian, WANG Dan, MU Liansong. Numerical Simulation and Experimental Investigation of Flow Fields in Vehicle Climatic Chambers [J]. China Mechanical Engineering, 2023, 34(17): 2115-2123. |
| [7] | ZHU Yulong, ZHAO Yingsong, FANG Yang, CHEN Hongen, CHEN Zhenmao, . Rotating Eddy Current Testing for Inspection of Cracks at Hole Edge [J]. China Mechanical Engineering, 2023, 34(08): 883-891. |
| [8] | QIN Deng, DAI Zhiyuan, ZHOU Ning, LI Tian. Effects of Pantograph Subsidence on Its Aerodynamic and Acoustic Behaviors [J]. China Mechanical Engineering, 2022, 33(20): 2509-2519. |
| [9] | LI Wei, ZHENG Hao, LIU Yanmei, FAN Song. Numerical Simulation on Mounted Bolt Failures in Vehicle Subframe [J]. China Mechanical Engineering, 2022, 33(19): 2388-2393. |
| [10] | HU Futai, . Cracking Suppression and Lateral Bending Broadening Strategy of Fan-shaped Thin-wall Ribs during Extrusion [J]. China Mechanical Engineering, 2022, 33(14): 1734-1740. |
| [11] | MA Yi, CHEN Yutao, MENG Xiangkai, ZHAO Wenjing, PENG Xudong, . Transient Start-up Dynamics Model and Sealing Performance of Single Metal Seals in Cone Bits [J]. China Mechanical Engineering, 2022, 33(07): 777-785. |
| [12] | XU Mingsan, ZHOU Chunhui, ZHANG Zheng, ZENG Shoujin, . Temperature Distribution of Powder-gas-optical Coupling temperature field in Laser Cladding Processes [J]. China Mechanical Engineering, 2022, 33(01): 70-77. |
| [13] | PAN Chengyi, TONG Yuanqi, CAO Guanqun, ZHAO Yanling. Research on Friction and Wear Characteristics and Simulation of Microstructures Surface Unfolding Wheels [J]. China Mechanical Engineering, 2021, 32(22): 2689-2696. |
| [14] | ZHU Qian, YOU Dongdong, ZHU Quanli, . Dynamic Fit of Injection Mechanisms for Squeeze Casting Machines Based on Friction Model#br# [J]. China Mechanical Engineering, 2021, 32(12): 1405-1413. |
| [15] | YIN Hongchao, LIU Xiao, ZHAI Zhende, MU Lin. Numerical Simulation of Abrasive Flow Machining in Multi-angle Elbows [J]. China Mechanical Engineering, 2021, 32(11): 1299-1306. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||