China Mechanical Engineering ›› 2023, Vol. 34 ›› Issue (12): 1446-1452.DOI: 10.3969/j.issn.1004-132X.2023.12.007

Previous Articles     Next Articles

Study on Design of Wheel-leg Deformable Wheel and Vehicle Control

GENG Xueqing1,2;WU Mengwu1,2;HUA Lin1,2   

  1. 1.School of Automotive Engineering,Wuhan University of Technology,Wuhan,430070
    2.Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan,430070
  • Online:2023-06-25 Published:2023-07-12

轮腿式可变形车轮设计及整车控制研究

耿雪晴1,2;吴孟武1,2;华林1,2   

  1. 1.武汉理工大学汽车工程学院,武汉,430070
    2.现代汽车零部件技术湖北省重点实验室,武汉,430070
  • 通讯作者: 吴孟武(通信作者),男,1984年生,副教授。研究方向为汽车轻量化设计与成形制造技术、汽车循环利用与再制造技术、特种制造与智能制造技术。E-mail:wumw@whut.edu.cn。
  • 作者简介:耿雪晴,女,1998年生,硕士研究生。研究方向为现代汽车设计与制造。
  • 基金资助:
    教育部创新团队计划(XDQCKF2021011);新能源汽车科学与关键技术学科创新引智基地项目(B17034)

Abstract:  In view of the demands of vehicle mobility and obstacle-crossing ability in complex terrain and road conditions, a deformable wheel structure was designed with the characteristics of switching between wheeled and legged states under different terrain and road conditions. The design principle of the deformable wheel was introduced and the structural parameters were calculated and optimized, the maximum diameter ratio of the wheel-leg deformable wheel was obtained. A set of simple and effective wheel-leg deformation control system was also designed. And then the vehicle layout design and movement process analysis was carried out. Finally, a prototype vehicle platform was made to verify the mobility and obstacle-crossing ability by physical experiments. The results show that the deformable wheel may be quickly and intelligently switched between wheeled and legged types, which enables the vehicle to run stably on both structured and unstructured roads, resulting in a high mobility and obstacle-crossing ability of the vehicle system.

Key words: deformable wheel, maximum diameter ratio, intelligently switch, vehicle control

摘要: 针对当前复杂地形与路况对整车机动性及越障能力的需求,设计了一种轮腿式可变形车轮结构,该车轮结构可在不同地形与路况下进行轮式与腿式的状态转换。介绍了可变形车轮的设计原理并对结构参数进行了计算与优化,分析得到了轮腿式可变形车轮最大变径比。设计了一套简单有效的轮腿式可变形车轮智能变形控制系统,并据此开展整车布局设计,分析整车运动过程。制作并搭建了样车平台,通过实验测试了整车的机动性与越障能力。结果表明该变形车轮可在轮式与腿式状态下快速智能转换,使得整车系统可同时在结构化与非结构化路面稳定行驶,具有较高的机动性与越障能力。

关键词: 可变形车轮, 最大变径比, 智能转换, 整车控制

CLC Number: