China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (11): 1302-1308,1385.DOI: 10.3969/j.issn.1004-132X.2022.11.006

Previous Articles     Next Articles

Design and Experimental Study of Piezoelectric Actuated Micro Precision Clamping Mechanisms

LI Chong;TONG Yujian;LIANG Kang;ZHONG Wei;FANG Jiwen   

  1. School of Mechanical Engineering,Jiangsu University of Science and Technology,Zhenjiang,Jiangsu,212100
  • Online:2022-06-10 Published:2022-07-01

压电驱动微型精密夹持机构设计与实验研究

李冲;童玉健;梁康;钟伟;方记文   

  1. 江苏科技大学机械工程学院,镇江,212100
  • 作者简介:李冲,男,1988年生,副教授。研究方向为压电驱动与控制、微机电系统、机械动力学等。发表论文20余篇。E-mail:lichong@just.edu.cn。
  • 基金资助:
    国家自然科学基金(51905228);中国博士后科学基金(2018M640515)

Abstract: In order to simplify the structure of precision piezoelectric clamping mechanisms and reduce the manufacturing difficulty, a micro precision piezoelectric clamping mechanism was proposed based on flexible hinge and two clamping arms, and the working principle was analyzed. The output displacement and force model of the precision piezoelectric clamping mechanisms were established based on the nonlinear strain relation of piezoelectric materials, and the output characteristics of the precision piezoelectric clamping mechanisms were analyzed by numerical simulation. The output performance of the precision piezoelectric clamping mechanisms and the correctness of the theoretical model were verified by the experimental results. The results show that both of the experimental and simulation displacements of the two clamping arms is as hysteretic. The maximum radial displacements of the two clamping arms are as 73.8 μm and 68.6 μm at 120 V driving voltage, respectively. When the driving voltage is greater than 50 V, the output displacement errors of the two clamping arms are within 10% between the experimental values and simulation ones. When the driving voltage is as 120 V, the experimental values of the maximum tangential and axial clamping forces of the clamping mechanisms are as 7.8 N and 5.7 N, respectively. 

Key words:  , piezoelectric driving, clamping mechanism, precision machinery, structural design, output characteristic

摘要: 为了简化压电精密夹持机构的结构以及降低其加工制造难度,提出了一种基于柔性铰链和两夹持臂的压电微型精密夹持机构,并分析了该夹持机构的工作原理。利用压电材料的非线性应变关系建立了压电精密夹持机构的输出位移和受力模型,通过数值仿真分析了精密夹持机构的输出特性。搭建了实验平台,通过实验测试验证了压电精密夹持机构的输出性能以及理论模型的正确性。结果表明:两夹持臂的实验与仿真位移均存在迟滞现象,在120 V驱动电压下,两夹持臂的最大径向位移测试值分别为73.8 μm和68.6 μm;当驱动电压大于50 V时,夹持臂输出位移测试值与仿真值间的误差在10%以内;当驱动电压为120 V时,夹持机构最大切向和轴向摩擦夹持力的实验值分别为7.8 N和5.7 N。

关键词: 压电驱动, 夹持机构, 精密机械, 结构设计, 输出特性

CLC Number: