China Mechanical Engineering ›› 2024, Vol. 35 ›› Issue (01): 160-180.DOI: 10.3969/j.issn.1004-132X.2024.01.016
Previous Articles Next Articles
SUN Haitao1;ZHAN Mei1;FAN Xiaoguang1;GUO Jing2;HAN Chao2;ZHANG Jun3
Online:
2024-01-25
Published:
2024-02-29
孙海涛1;詹梅1;樊晓光1;郭靖2;韩超2;张君3
通讯作者:
詹梅(通信作者),女,1972年生,教授、博士研究生导师。研究方向为高性能轻量化精确塑性成形制造理论与技术。Email:zhanmei@nwpu.edu.cn。
作者简介:
孙海涛,男,1993年生,博士研究生。研究方向为PBX炸药致密化成型与性能调控。Email:sunhaitao@mail.nwpu.edu.cn。
基金资助:
CLC Number:
SUN Haitao, ZHAN Mei, FAN Xiaoguang, GUO Jing, HAN Chao, ZHANG Jun. Research Progresses and Prospects of Compression Molding of High-performance PBX[J]. China Mechanical Engineering, 2024, 35(01): 160-180.
孙海涛, 詹梅, 樊晓光, 郭靖, 韩超, 张君. 高性能高聚物黏结炸药压制成型研究进展与展望[J]. 中国机械工程, 2024, 35(01): 160-180.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2024.01.016
[1]崔庆忠, 刘德润. 高能炸药与装药设计[M]. 北京:国防工业出版社, 2019:213-222. CUI Qingzhong, LIU Derun. Explosives and Charging Design[M]. Beijing:National Defense Industry Press, 2019:213-222. [2]严启龙, 聂福德, 杨志剑, 等. 高聚物黏结炸药及其性能[M]. 北京:国防工业出版社, 2020:68-75. YAN Qilong, NIE Fude, YANG Zhijian, et al. Polymer Bonded Explosives and Their Properties[M]. Beijing:National Defense Industry Press, 2020:68-75. [3]梁华琼, 韩超, 雍炼, 等. 高聚物黏结粉末橡胶等静压净成型技术[J]. 含能材料, 2011, 19(3):325-329. LIANG Huaqiong, HAN Chao, YONG Lian, et al. Net Shaping Technology of Polymer Bonded Powder by Rubber Isostatic Pressing[J]. Chinese Journal of Energetic Materials, 2011, 19(3):325-329. [4]孙建. 等静压炸药装药技术发展与应用[J]. 含能材料, 2012, 20(5):638-642. SUN Jian. Development of Isostatic Pressing Technology of Explosive Charge[J]. Chinese Journal of Energetic Materials, 2012, 20(5):638-642. [5]张伟斌, 杨雪海, 杨仍才, 等. 单向温模压 TATB 基高聚物黏结炸药 X 射线微层析成像[J]. 含能材料, 2014, 22(2):202-205. ZHANG Weibin, YANG Xuehai, YANG Rengcai, et al. X-ray Micro-tomography of TATB Based Polymer Bonded Explosives under Unidirectional Warm Die Compaction[J]. Chinese Journal of Energetic Materials, 2014, 22(2):202-205. [6]戴斌. 模压过程TATB造型颗粒结构演变与应力响应研究[D]. 绵阳:中国工程物理研究院, 2015. DAI Bin. Structural Evolution and Stress Response of TATB Molding Particles during Molding[D].Mianyang: China Academy of Engineering Physics, 2015. [7]DAI Bin, LAN Lingang, ZHANG Weibin, et al. Study on the State of Internal Stress and Strain of TATB-based Polymer Bonded Explosive Using Strain Markers and Cone-beam Computed Tomography[J]. Central European Journal of Energetic Materials, 2017, 14(3):688-707. [8]白亮飞, 田强, 屠小青, 等. 冷压成型压力对HMX基PBX微结构影响的 SANS 研究[J]. 含能材料, 2019, 27(10):853-860. BAI Liangfei, TIAN Qiang, TU Xiaoqing, et al. SANS Investigation on the Effect of Cold-pressed Forming Pressure on the Microstructure of HMX-based PBX[J]. Chinese Journal of Energetic Materials, 2019, 27(10):853-860. [9]唐红, 周俊辉, 吕珂臻, 等. PBX压制过程中细观力学行为的二维数值模拟[J]. 含能材料, 2016, 24(7):651-656. TANG Hong, ZHOU Junhui, LYU Kezhen, et al. Two Dimensional Numerical Simulation for Mesoscopic Mechanics Behaviors of PBX in Pressing Process[J]. Chinese Journal of Energetic Materials, 2016, 24(7):651-656. [10]HU Gaoyang, ZHOU Bo, FU Ru, et al. Discrete Element Modeling of the Compression Molding of Polymer-crystal Composite Particles[J]. Powder Technology, 2021, 309:112-125. [11]GUO Yuchen, LIU Rui, CHEN Pengwan, et al. Mechanical Behavior of PBX with Different HMX Crystal Size during Die Pressing:Experimental Study and DEM Simulation[J]. Composites Science and Technology, 2022, 222:109378. [12]田勇, 李高强, 温茂萍, 等. 炸药柱径向密度分布的γ射线自动透射检测装置[J]. 无损检测, 2000, 22(8):355-357. TIAN Yong, LI Gaoqiang, WEN Maoping, et al. An Automatic Transmission Measuring Device for Gamma Rays with Radial Density Distribution of Explosive Column.[J]. Nondestructive Testing, 2000, 22(8):355-357. [13]杨雪海, 张伟斌, 杨仍才, 等. 复杂构型 PBX 截面密度分布 CT 测试方法[J]. 含能材料, 2016, 24(6):609-613. YANG Xuehai, ZHANG Weibin, YANG Rengcai, et al. CT Test Method for the Cross-section Density Distribution of PBX Component with Complex Configuration[J]. Chinese Journal of Energetic Materials, 2016, 24(6):609-613. [14]刘鹏华, 李云欣, 张浩斌, 等. 氟聚物黏结剂对 TATB基 PBX造型粉可压性的影响[J]. 火炸药学报, 2022, 45(3):396-403. LIU Penghua, LI Yunxin, ZHANG Haobin, et al. Effect of Fluoropolymer Binder on the Compressibility of TATB-based PBX Molding Powder[J]. Chinese Journal of Explosives& Propellants, 2022, 45(3):396-403. [15]张远舸, 田勇, 周红萍, 等. 造型粉致密化成型中的密度演化规律研究(Ⅰ) :加载曲线方程的构建[J]. 含能材料, 2018, 26(7):602-607. ZHANG Yuange, TIAN Yong, ZHOU Hongping, et al. Density Evolution Law in Compacting Molding Powder(Ⅰ):Construction of Loading Curve Equation[J]. Chinese Journal of Energetic Materials, 2018, 26(7):602-607. [16]张远舸. PBX造型粉的致密化行为与密度演化规律研究[D]. 绵阳:中国工程物理研究院, 2018. ZHANG Yuange. Study on Densification Behavior and Density Evolution of PBX Molding Powder[D].Mianyang: China Academy of Engineering Physics, 2018. [17]张锋, 韩超, 周旭辉, 等. TATB 基含铝 PBX 炸药成型性能[C]∥含能材料与钝感弹药技术学术研讨会论文集. 三亚, 2014:152-155. ZHANG Feng, HAN Chao, ZHOU Xuhui, et al. The Pressing Properties Study of a TATB-based Aluminized PBX[C]∥Symposium on Energetic Materials and Insensitive Munitions. Sanya, 2014:152-155. [18]张德三. 等静压成型JB9014e工艺研究[J]. 火炸药学报, 1998,21(3):20-22. ZHANG Desan. Investigation of Isostatic Pressing Procedure for Explosive JB9014e[J]. Chinese Journal of Explosives and Propellants, 1998,21( 3):20-22. [19]梁华琼, 韩超, 雍炼, 等. 高聚物黏结炸药的压制成型性[J]. 火炸药学报, 2010, 33(4):44-48. LIANG Huaqiong, HAN Chao, YONG Lian, et al. Pressing Mechanism of Polymer-bonded Explosive[J]. Chinese Journal of Explosives and Propellants, 2010, 33(4):44-48. [20]AZHDAR B, STENBERG B, KARI L, et al. Development of a High-velocity Compaction Process for Polymer Powders[J]. Polymer Testing, 2005, 24:909-919. [21]LYU Kezhen, YANG Kun, ZHOU Bo, et al. The Densification and Mechanical Behaviors of Large-diameter Polymer Bonded Explosives Processed by Ultrasonic-assisted Powder Compaction[J]. Materials & Design, 2021, 207:109872. [22]刘春泽, 吕珂臻, 贺建华, 等. PBX 代用粉体超声加载成型的实验研究[J]. 声学技术, 2015, 34(1):47-50. LIU Chunze, LYU Kezhen, HE Jianhua, et al. Experimental Study of Ultrasonic Vibration Compacting Technique for PBX Substitute Powder[J]. Technical Acoustics, 2015, 34(1):47-50. [23]CHATTI M, GRATTON M, CALIEZ M, et al. Experimental Investigation of the Behaviour of a Simulant Material for Plastic-bonded Explosives and Modelling of the Effectivity and Damage Induced Anisotropy[J]. Mechanics of Materials, 2022, 172:104388. [24]许盼盼, 陈华, 解社娟, 等. PBX 代用材料损伤演化原位 CT 研究[J]. 含能材料, 2018, 26(10):888-895. XU Panpan, CHEN Hua, XIE Shejuan, et al. Damage Evolution Behavior of PBX Substitute Material Using in-situ CT[J]. Chinese Journal of Energetic Materials, 2018, 26(10):888-895. [25]LI Weibin, XU Yaru, QING Xinlin, et al. Quantitative Imaging of Surface Cracks in Polymer Bonded Explosives by Surface Wave Tomographic Approach[J]. Polymer Testing, 2019, 74:63-71. [26]WANG Xian, MA Shaopeng, ZHAO Yingtao, et al.Observation of Damage Evolution in Polymer Bonded Explosives Using Acoustic Emission and Digital Image Correlation[J]. Polymer Testing, 2011, 30:861-866. [27]SKIDMORE C B, PHILLIPS D S, HOWE P M, et al. The Evolution of Microstructural Changes in Pressed HMX Explosives[C]∥Eleventh International Detonation Symposium. Snowmass ,1998:556-564. [28]PETERSON P D, MANG J T, FLETCHER M A, et al. Influence of Pressing Intensity on the Micro-structure of PBX 9501[J]. Energetic Materials, 2003, 21:247-260. [29]BURNSIDE N J, SON S F, ASAY B W, et al. Particle Characterization of Pressed Granular HMX[J]. Shock Compression of Condensed Matter, 1997, 579:571-574. [30]梁华琼, 周旭辉, 唐常良, 等. HMX钢模压制的微观结构演变研究[J]. 含能材料, 2008, 16(2):188-190. LIANG Huaqiong, ZHOU Xuhui, TANG Changliang, et al. Microstructural Evolution of HMX During Pressing[J]. Chinese Journal of Energetic Materials, 2008, 16(2):188-190. [31]梁华琼, 雍炼, 唐常良, 等. 压制过程中PBX 炸药颗粒的破碎及损伤[J]. 火炸药学报, 2010, 33(1):27-30. LIANG Huaqiong, YONG Lian, TANG Changliang, et al. Crack and Damage of PBX during Pressing[J]. Chinese Journal of Explosives and Propellants, 2010, 33(1):27-30. [32]梁华琼, 雍炼, 唐常良, 等. RDX为基的PBX炸药压制过程损伤形成研究[J]. 含能材料, 2009, 17(6):713-716. LIANG Huaqiong, YONG Lian, TANG Changliang, et al. Pressing Damage of RDX-based Polymer Bonded Explosive[J]. Chinese Journal of Energetic Materials, 2009, 17(6):713-716. [33]张伟斌, 李敬明, 杨雪海, 等. TATB 颗粒温压成形 PBX 的初始细观损伤[J]. 含能材料, 2015, 23(2):202-204. ZHANG Weibin, LI Jingming, YANG Xuehai, et al. Initial Mesoscopic Damage of TATB Based PBX Pressedby Warm Compaction[J]. Chinese Journal of Energetic Materials, 2015, 23(2):202-204. [34]闫冠云, 田强, 刘家辉, 等. 热损伤 PBX-PBX 微缺陷的 X 射线小角散射研究[C]∥含能材料与钝感弹药技术学术研讨会论文集. 三亚, 2014:439-443. YAN Guanyun, TIAN Qiang, LIU Jiahui, et al. A Small-angle X-ray Scattering Study of Micro-defects in Thermally Treated HMX-PBX[C]∥Symposium on Energetic Materials and Insensitive Munitions. Sanya, 2014:439-443. [35]刘佳辉, 刘世俊, 黄明, 等. 钢模压制下高品质 PBX晶体的损伤规律[J]. 火炸药学报, 2012, 35(3):42-46. LIU Jiahui, LIU Shijun, HUANG Ming, et al. Crack and Damage in Insensitive HMX Crystal during Pressing[J]. Chinese Journal of Explosives and Propellants, 2012, 35(3):42-46. [36]刘佳辉, 刘世俊, 黄明, 等. 压制 PBX 中炸药晶体损伤的研究进展[J]. 含能材料, 2013, 21(3):372-378. LIU Jiahui, LIU Shijun, HUANG Ming, et al. Progress on Crystal Damage in Pressed Polymer Bonded Explosives[J]. Chinese Journal of Energetic Materials, 2013, 21(3):372-378. [37]XU Wenzheng, GUO Fengwei, LIANG Xin, et al. Dynamic Response Properties of Polymer Bonded Explosives under Different Excitation by Deceleration[J]. Materials & Design, 2021, 206:109810. [38]IQBAL M, LI-MAYER J Y S, LEWIS D, et al. Mechanical Characterization of the Nitrocellulose-based Visco-hyperelastic Binder in Polymer Bonded Explosives[J]. Physics of Fluids, 2020, 32:023103. [39]LIU Ming, HUANG Xicheng, WU Yanqing, et al. Modeling of the Deformation and Damage of Plastic-bonded Explosive in Consideration of Pressure and Strain Rate Effects[J]. International Journal of Impact Engineering, 2020, 146:103722. [40]LIU Ming, HUANG Xicheng, WU Yanqing, et al. Numerical Simulations of the Damage Evolution for Plastic-bonded Explosives Subjected to Complex Stress States[J]. Mechanics of Materials, 2019, 139:103179. [41]CHATTI M, FRACHON A, GRATTON M, et al. Modelling of the Viscoelastic Behaviour with Damage Induced Anisotropy of a Plastic-bonded Explosive Based on the Microplane Approach[J]. International Journal of Solids and Structures, 2019, 168:13-25. [42]HUANG Kai, YAN Jia, SHEN Rilin, et al. Investigation on Fracture Behavior of Polymer-bonded Explosives under Compression Using a Viscoelastic Phase-field Fracture Method[J]. Engineering Fracture Mechanics, 2022, 266:108411. [43]YEAGER J D, MANNER V W, STULL J A, et al. Importance of Microstructural Features in Mechanical Response of Cast-cured HMX Formulations[J]. American Institute Physics, 2018, 1979:070033. [44]MANNER V W, YEAGER J D, PATTERSON B M, et al. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling[J]. Materials, 2017, 10:638-651. [45]沈迎咏. PBX裂纹扩展的细观及宏细观耦合数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. SHEN Yingyong. The Mesoscopic and Macro-mesoscopic Coupling Numerical Simulation of PBX Crack Propagation[D]. Harbin:Harbin Institute of Technology, 2018. [46]YANG Kun, WU Yanqing, HUANG Fenglei. Microcrack and Microvoid Dominated Damage Behaviors for Polymer Bonded Explosives under Different Dynamic Loading Conditions[J]. Mechanics of Materials, 2019, 137:103130. [47]YANG Kun, WU Yanqing, HUANG Fenglei. Numerical Simulations of Microcrack-related Damage and Ignition Behavior of Mild-impacted Polymer Bonded Explosives[J]. Journal of Hazardous Materials, 2018, 356:34-52. [48]XUE Haijiao, WU Yanqing, YANG Kun, et al. Microcrack- and Microvoid-related Impact Damage and Ignition Responses for HMX-based Polymer-bonded Explosives at High Temperature[J]. Defence Technology, 2022,18:1602-1621. [49]WALTERS D J, LUSCHER D J, YEAGER J D, et al. Cohesive Finite Element Modeling of the Delamination of HTPB Binder and HMX Crystals under Tensile Loading[J]. International Journal of Mechanical Sciences, 2018, 140:151-162. [50]BARUA A, HORIE Y, ZHOU M, et al. Energy Localization in HMX-estane Polymer-bonded Explosives during Impact Loading[J]. Journal of Applied Physics, 2012, 111:054902. [51]BARUA A, KIM S, HORIE Y, et al. Ignition Criterion for Heterogeneous Energetic Materials Based on Hotspot Size-temperature Threshold[J]. Journal of Applied Physics, 2013, 113:064906. [52]BARUA A, ZHOU M. A Lagrangian Framework for Analyzing Microstructural Level Response of Polymer-bonded Explosives[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19:055001. [53]ARORA H, TARLETON E, MAYER J L, et al. Modelling the Damage and Deformation Process in a Plastic Bonded Explosive Microstructure under Tension Using the Finite Element Method[J]. Computational Materials Science, 2015, 110:91-101. [54]WANG Xinjie, WU Yanqing, HUANG Fenglei, et al. Mesoscale Thermal-mechanical Analysis of Impacted Granular and Polymer-bonded Explosives[J]. Mechanics of Materials, 2016, 99:68-78. [55]WANG Xinjie, WU Yanqing, HUANG Fenglei. Numerical Mesoscopic Investigations of Dynamic Damage and Failure Mechanisms of Polymer Bonded Explosives[J]. International Journal of Solids and Structures, 2017, 129:28-39. [56]DENG Xiaoliang, WANG Bo. Peridynamic Modeling of Dynamic Damage of Polymer Bonded Explosive[J]. Computational Materials Science, 2020, 173:109405. [57]HUANG Yafei, DENG Xiaoliang, BAI Jingsong, et al. Peridynamic Investigation of Dynamic Damage Behaviors of PBX Confined in Spherical Steel Shells[J]. Mechanics of Materials, 2022, 172:104389. [58]XIAO Youcai, SUN Yi, ZHEN Yubao, et al. Characterization, Modeling and Simulation of the Impact Damage for Polymer Bonded Explosives[J]. International Journal of Impact Engineering, 2017, 103:149-158. [59]PAULSON S C, ROBERTS Z A, SORENSEN C J, et al. Observation of Damage during Dynamic Compression of Production and Low-defect HMX Crystals in Sylgard Binder Using X-ray Phase Contrast Imaging[J]. Journal of Dynamic Behavior of Materials, 2019, 6:34-44. [60]KANG Ge, NING Youjun, CHEN Pengwan. Meso-scale Failure Simulation of Polymer Bonded Explosive with Initial Defects by the Numerical Manifold Method[J]. Computational Materials Science, 2020, 173:109425. [61]KANG Ge, CHEN Pengwan, GUO Xuan, et al. Simulations of Meso-scale Deformation and Damage of Polymer Bonded Explosives by the Numerical Manifold Method[J]. Engineering Analysis with Boundary Elements, 2018, 96:123-137. [62]DANDEKAR A, KOSLOWSKI M. Effect of Particle Proximity and Surface Properties on the Response of PBX under Vibration[J]. Computational Materials Science, 2021, 192:110334. [63]PARKER G R, EASTWOOD D S, STORM M, et al. 4D Micro-scale, Phase-contrast X-ray Imaging and Computed Tomography of HMX-based Polymer-bonded Explosives during Thermal Runaway[J]. Combustion and Flame, 2021, 226:478-489. [64]HERMAN M J, WOZNICK C S, SCOTT S J, et al. Composite Binder, Processing, and Particle Size Effects on Mechanical Properties of Non-hazardous High Explosive Surrogates[J]. Powder Technology, 2021, 391:442-449. [65]唐明峰, 颜熹琳, 唐 维, 等. PBX中炸药晶体与黏结剂界面力学特性的研究进展[J]. 火炸药学报, 2015, 38(5):1-5. TANG Mingfeng, YAN Xilin, TANG Wei , et al. Progress of Study on Mechanical Properties of the Crystal/Binder Interface in PBX[J]. Chinese Journal of Explosives and Propellants, 2015, 38(6):1-5. [66]TANG Mingfeng. Constitutive Behavior of RDX-based PBX with Loading-history and Loading-rate Effects[J]. Chinese Journal of Energetic Materials, 2016, 9:832-837. [67]唐明峰, 甘海啸, 温茂萍, 等.含缺口PBX药柱热冲击响应的数值模拟及试验[J]. 含能材料, 2021, 29(1):41-47. TANG Mingfeng, GAN Haixiao, WEN Maoping, et al. Simulation and Experimental Study on the Thermal Shock Behavior of Notched PBX Cylinders[J]. Chinese Journal of Energetic Materials, 2021, 29(1):41-47. [68]唐明峰,温茂萍,涂晓珍, 等. 高温及机械应力对PBX力学行为的影响规律及机理分析[J]. 含能材料, 2018, 26 (2):150-155. TANG Mingfeng, WEN Maoping, TU Xiaozhen, et al. Influence and Mechanism of High Temperature and Mechanical Stress on the Mechanical Behaviors of PBXs[J]. Chinese Journal of Energetic Materials, 2018, 26 (2):150-155. [69]吴永炎,王晶禹. 基于 MD 方法的多组分 PBX 黏结剂优选研究[J]. 火工品, 2012 (3):37-39. WU Yongyan, WANG Jingyu. Study on Preferred Adhesives of Multi-components PBX Based on MD[J]. Initiators and Pyrotechnics, 2012 (3):37-39. [70]刘永刚. TATB基高聚物黏结炸药的表/界面特性[C]∥中国科协2001年学术年会. 长春, 2001:404-405. LIU Yonggang. Surface/Interface Properties of TATB-based Polymer Bonded Explosives[C]∥China Association for Science and Technology Annual Conference 2001. Changchun, 2001:404-405. [71]LYU Li, YANG Mingli, LONG Yao, et al. Molecular Dynamics Simulation of Structural and Mechanical Features of a Polymer-bonded Explosive Interface under Tensile Deformation[J]. Applied Surface Science, 2021, 557:149823. [72]LIN Congmei, HE Guansong, LIU Jiahui, et al. Construction and Non-linear Viscoelastic Properties of Nano-Structure Polymer Bonded Explosives Filled with Graphene[J]. Composites Science and Technology, 2018, 160:152-160. [73]LIN Congmei, HUANG Bing, YANG Zhijian, et al. Construction of Self-reinforced Polymer Based Energetic Composites with Nano-energetic Crystals to Enhance Mechanical Properties[J]. Composites Part A:Applied Science and Manufacturing, 2021, 150:106604. [74]LI Zijian, ZHAO Xu, GONG Feiyan, et al. Catechol-modified Polymers for Surface Engineering of Energetic Crystals with Reduced Sensitivity and Enhanced Mechanical Performance[J]. Applied Surface Science, 2022, 572:151448. [75]ZENG Chengcheng, LIN Congmei, ZHANG Jianhu, et al. Grafting Hyperbranched Polyester on the Energetic Crystals:Enhanced Mechanical Properties in Highly-loaded Polymer Based Composites[J]. Composites Science and Technology, 2019, 184:107842. [76]YAN Fanyuhui, ZHU Peng, ZHAO Shuangfei, et al. Microfluidic Strategy for Coating and Modification of Polymer-bonded Nano-HNS Explosives[J]. Chemical Engineering Journal, 2022, 428:131096. [77]HE Guansong, LI Xin, BAI Liangfei, et al. Multilevel Core-shell Strategies for Improving Mechanical Properties of Energetic Polymeric Composites by the “Grafting-from” Route[J]. Composites Part B:Engineering, 2020, 191:107967. [78]DEWANGAN B, CHAKLADAR N D. Effects of Porosity on the Cure Kinetics and Residual Stress of a Porous Polymer[J]. Materials Today Communications, 2023, 35:105711. [79]YANG Zhanfeng, TIAN Yong, LI Weibin, et al. Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage[J]. Materials, 2017, 10:660-669. [80]OU Yapeng, JIAO Qingjie, YAN Shi, et al. Influence of Bismuth Complex Catalysts on the Cure Reaction of Hydroxyl-terminated Polyether-based Polymer Bonded Explosives[J]. Central European Journal of Energetic Materials, 2018, 15(1):131-149. [81]赵慧琴, 李瑞. 厚板焊接残余应力测试方法的研究进展[J].造纸装备及材料, 2022, 51(6):58-60. ZHAO Huiqin, LI Rui. Research Progress of Measuring Methods of Residual Stress in Thick Plate Welding[J]. Papermaking Equipment & Materials, 2022, 51(6):58-60. [82]陈靖华. 塑料黏结炸药药柱残余应力的X射线衍射检测技术及应用[D]. 成都:四川大学, 2008. CHEN Jinghua.Studies on Technique and Its Application of X-ray Diffraction Testing for Polymer Bonded Explosive[D]. Chengdu:Sichuan University, 2008. [83]雍志华, 朱世富, 赵北君, 等. X射线法测量黏结炸药的残余应力[J]. 四川大学学报, 2007, 39(5):101-105. YONG Zhihua, ZHU Shifu, ZHAO Beijun, et al. Residual Stress Test of Bonded Explosives by X-ray Diffraction Method[J]. Journal of Sichuan University, 2007, 39(5):101-105. [84]温茂萍, 唐维, 董平, 等. 黏结剂含量对热压TATB基PBX残余应力的影响[J]. 含能材料, 2017, 25(8):661-666. WEN Maoping, TANG Wei, DONG Ping, et al.Effect of Binder Content on Residual Stress of Thermally Compacted TATB based PBX[J]. Chinese Journal of Energetic Materials, 2017, 25(8):661-666. [85]王延珺, 邹翔, 潘兵, 等. 基于数字体图像相关法的 TATB 基 PBX 材料内部变形测量[J]. 含能材料, 2022, 30(12):1272-1281. WANG Yanjun, ZOU Xiang, PAN Bing, et al. 3D Deformation Measurement in TATB Based PBX Based on Digital Volume Correlation with μ-Computed Tomography[J]. Chinese Journal of Energetic Materials, 2022, 30(12):1272-1281. [86]PAN Qinxue, LI Shuangyang, LIU Yang, et al. Meso-simulation and Experimental Research on the Mechanical Behavior of an Energetic Explosive[J]. Coatings, 2021, 11:64-84. [87]周海强, 裴翠祥, 刘文文, 等. PBX 模拟材料内应力激光超声掠面纵波检测方法研究[J]. 含能材料, 2018, 26(9):786-790. ZHOU Haiqiang, PEI Cuixiang, LIU Wenwen, et al. Study on Detection Method of Internal Stress in PBX Simulated Material by Laser Ultrasonic Skimming Surface Longitudinal Wave[J]. Chinese Journal of Energetic Materials, 2018, 26(9):786-790. [88]徐尧, 王虹, 李建, 等. 中子衍射法测量 TATB 基 PBX 单轴压缩的内应力研究[J]. 含能材料, 2017, 25(10):860-865. XU Yao, WANG Hong, LI Jian, et al. Internal Stress Measurement during Uniaxial Compression for TATBBased PBX by Neutron Diffraction[J]. Chinese Journal of Energetic Materials, 2017, 25(10):860-865. [89]LEWIS A L, GOLDREIN H T. Strain Measurement Techniques in Explosives[J].Strain, 2004, 40:33-37. [90]兰琼, 韩超, 雍炼, 等. 低压热处理对PBX炸药件密度及内部质量的影响[J]. 含能材料, 2008, 16(2):185-187. LAN Qiong, HAN Chao,YONG Lian, et al. Effects of Low Pressure Heat Treatment on Charge Density and Inner Quality of PBX[J]. Chinese Journal of Energetic Materials, 2008, 16(2):185-187. [91]田勇, 张伟斌, 李敬明, 等. 采用超声波特性参量研究PBX炸药的热处理[J]. 含能材料, 2006, 14(1):53-55. TIAN Yong, ZHANG Weibin, LI Jingming, et al. Heat Treatment of Polymer Bonded Explosive by Using Ultrasonic Characterization[J]. Chinese Journal of Energetic Materials, 2006, 14(1):53-55. [92]BAO Peng, LI Jian, HAN Zhiwei, et al. Comparing the Impact Safety between Two HMX-based PBX with Different Binders[J]. FirePhysChem, 2021, 1:139-145. [93]HUANG Xin, HUANG Zhong, LAI Jiancheng, et al. Self-healing Improves the Stability and Safety of Polymer Bonded Explosives[J]. Composites Science and Technology, 2018, 168:346-354. [94]DU Lixiaosong, JIN Shaohua, SHU Qinghai, et al. The Investigation of NTO/HMX-based Plastic-bonded Explosives and Its Safety Performance[J]. Defence Technology, 2022, 18:72-80. [95]WANG Qianyou, FENG Xiao, WANG Shan, et al. Metal-organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability[J]. Advanced Materials, 2016, 28:5837-5843. [96]国家自然科学基金会委员工程与材料科学部. 机械工程学科发展战略报告(2021—2035)[M]. 北京:科学出版社, 2021:297-306. Department of Engineering and Materials Science, National Natural Science Foundation of China. Report on Advances in Mechanical Engineering(2021—2035)[M].Beijing: Science Press, 2021:297-306. [97]MAO Ting, ZHANG Yun, RUAN Yufei, et al. Feature Learning and Process Monitoring of Injection Molding Using Convolution-deconvolution Auto Encoders[J]. Computers & Chemical Engineering, 2018, 118:77-90. [98]ZHOU Xundao, ZHANG Yun, MAO Ting, et al. Monitoring and Dynamic Control of Quality Stability for Injection Molding Process[J]. Journal of Materials Processing Technology, 2017, 249:358-366. [99]GUO Fei, ZHOU Xiaowei, LIU Jiahuan, et al. A Reinforcement Learning Decision Model for Online Process Parameters Optimization from Offline Data in Injection Molding[J]. Applied Soft Computing, 2019, 85:1058. [100]刘二甲. PBX本构模型的热力耦合仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. LIU Erjia. Thermodynamic Coupling Simulation of PBX Constitutive Model[D]. Harbin:Harbin Institute of Technology, 2019. [101]KANG Ge, YANG Zheng, CHEN Pengwan, et al. Mechanical Behavior Simulation of Particulate-filled Composite at Meso-scale by Numerical Manifold Method[J]. International Journal of Mechanical Sciences, 2022, 213:106846. [102]XIAO Youcai, XIAO Xiangdong, XIONG Yanyi, et al. Mechanical Behavior of a Typical Polymer Bonded Explosive under Compressive Loads[J].Journal of Energetic Materials, 2021, 42:1-33. |
[1] | LI Yingchun, NIE Aonan, YANG Mingxuan, ZHU Dingkang, QIU Ming, YANG Gengsheng. Research on Thermal Characteristics of Auxiliary Bearing in AMBs and Friction Reduction Design [J]. China Mechanical Engineering, 2024, 35(04): 646-655. |
[2] | LIANG Yongbin, FU Guang, LIN Zhigui, HE Zhicheng, ZHANG Jialuo, CHEN Tao. Design of Lane Keeping Assist Systems Based on Improved Preview Control Model [J]. China Mechanical Engineering, 2024, 35(03): 548-558. |
[3] | HUANG Wei, CHI Cheng. Analysis for Aero -elastic Characteristics of Prop-Rotor in Hover with a Swept Tip [J]. China Mechanical Engineering, 2024, 35(02): 191-200. |
[4] | XU Zuolin, HUANG Chuanzhen, LIU Huanlian, LIU Dun. Coating Technology and Mechanism of Modified Diamond Powder by Surface Coating of WC Powders [J]. China Mechanical Engineering, 2024, 35(02): 208-214. |
[5] | YUE Jianfeng, LONG Xinyu, HUANG Yunlong, GUO Jialong, LIU Wenji. On-line Identification of Narrow Gap P-GMAW Sidewall Fusion States Based on Arc Acoustic Signals [J]. China Mechanical Engineering, 2024, 35(02): 244-250,259. |
[6] | DU Xu, CHANG Zexin, ZHENG Junqiang, REN Pengfei. A Real-time Tool Path Smoothing Algorithm Considering Joint Jerk Constraints [J]. China Mechanical Engineering, 2024, 35(02): 280-286. |
[7] | SUN Yuxiang, CHEN Li, LONG Bo, WANG Yanping, LIU Shihua, JIA Kun. Intelligent Layout for Pipeline Supports of Nuclear Power Plant under Complex Load [J]. China Mechanical Engineering, 2024, 35(02): 317-323,336. |
[8] | LI Mozhi, ZHU Wenfeng, WANG Shunchao. Roller Pose Compensation in Automotive Body Roll-hemming Forming Process with Adhesive for Dimensional Deviation [J]. China Mechanical Engineering, 2024, 35(02): 364-370. |
[9] | WANG Weijun, YANG Guilin, DU Qinghao, CHEN Qingying, . Design of 3K Planetary Gear Reducers with No Backlash [J]. China Mechanical Engineering, 2024, 35(01): 36-44,55. |
[10] | GAO Jin, CUI Haibing, FAN Tao, LI Ang, DU Zunfeng. A Structural Reliability Calculation Method Based on Adaptive Kriging Ensemble Model [J]. China Mechanical Engineering, 2024, 35(01): 83-92. |
[11] | ZHU Fuxian, QIU Gang, ZHU Xingmin, XU Xianyi, ZHOU Jinyu. Failure Mode and Progressive Damage Analyses of Carbon-glass Hybrid Composite Single Nail and Single Shear Bolted Joints [J]. China Mechanical Engineering, 2023, 34(23): 2781-2793. |
[12] | HAO Zhuangzhuang, ZHANG Qingchun, HU Yunbo, GUO Yibin, WANG Donghua, LI Wanyou. Research on Influences of Tooth Friction and Geometric Eccentricity Errors on Mesh Stiffness of Profile Shifted Spur Gear Pairs [J]. China Mechanical Engineering, 2023, 34(23): 2812-2823. |
[13] | YU Shubo, LIU Zhansheng, ZHAO Chen. Dynamics Simulation Data Driven Domain Adaptive Intelligent Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(23): 2832-2841. |
[14] | LIU Xiaobao, YAN Qingxiu, YI Bin, YAO Tingqiang, GU Wenjuan. Optimization of Process Parameters in Process Manufacturing Based on Ensemble Learning and Improved Particle Swarm Optimization Algorithm [J]. China Mechanical Engineering, 2023, 34(23): 2842-2853. |
[15] | JIA Zhixin, ZHANG Kaiyue, WANG Jin. Study on EDM of PCD by Mixing Iron Powders [J]. China Mechanical Engineering, 2023, 34(22): 2684-2692. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||