石文天;侯岩军;刘玉德;李强强
出版日期:
2019-12-10
发布日期:
2019-12-10
基金资助:
SHI Wentian;HOU Yanjun;LIU Yude;LI Qiangqiang
Online:
2019-12-10
Published:
2019-12-10
摘要: 概述了微切削毛刺的形态、分类及其生成机理;阐述了微切削毛刺的仿真分析研究进展;在微切削毛刺的试验研究进展方面,分析了切削工艺参数、刀具几何、切削方式和辅助工艺对微切削毛刺的影响;介绍了几种常用复合材料加工毛刺的研究现状;根据毛刺的成形机理和加工方式,综述了去除毛刺的工艺方法与设备,提出了去毛刺装置的性能要求;最后总结了微细毛刺研究方面的不足,并指出了将来研究的方向。
中图分类号:
石文天;侯岩军;刘玉德;李强强. 微切削毛刺形成机理及研究进展综述[J]. 中国机械工程.
SHI Wentian;HOU Yanjun;LIU Yude;LI Qiangqiang. Overview on Formation Mechanism and Research Progresses of Burrs in Micro Cutting[J]. China Mechanical Engineering.
[1]FU Dengkui, DING Wenfeng, YANG Shubao, et al. Formation Mechanism and Geometry Characteristics of Exit-direction Burrs Generated in Surface Grinding of Ti-6Al-4V Titanium Alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016,89:2299-2313. [2]刘斌,裴满华,邹仕放.制品表面毛刺去除技术综述[J].表面技术,2010,39(5):100-102. LIU Bin, PEI Manhua, ZOU Shifang. Overviw of Burr Removing Techniques[J]. Surface Technology, 2010,39(5):100-102. [3]LE D,LEE J M , KIM S J, et al. Burr Analysis in Microgrooving[J]. International Journal Advanced Manufacturing Technology, 2010, 50(3):569-577. [4]PRATIM S P, DAS S. Burr Minimization in Face Milling:an Edge Beveling Approach[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2011,225(9):1528-1534. [5]AURICH J C, DOMFELD D, ARRAZOLA P J, et al. Burrs—Analysis, Control and Removal[J]. CIRP Annals:Manufacturing Technology, 2009, 58:519-542. [6]International Organization for Standardization. ISO 13715—2017 Technical Product Documentation—Edges of Undefined Shape — Indication and Dimensioning[S].Geneva:ISO Copyright Office,2017. [7]白清顺,刘立飞,卢礼华,等.微细铣削圆弧槽微结构时的微毛刺分析及预测[J].机械设计与制造,2011(11):229-231. BAI Qingshun,LIU Lifei,LU Lihua, et al. Analysis and Prediction for Micro Burr Size in Micro-milling Circular Groove Microstructure[J]. Mechanical Design and Manufacturing, 2011(11):229-231. [8]AHN Y, LEE S H. Classification and Prediction of Burr Formation in Micro Drilling of Ductile Metals [J]. International Journal of Production Research, 2017,55(17):4833-4846. [9]CHENG Jun, JIN Yang, WU Jun, et al. Experimental Study on a Novel Minimization Method of Top Burr Formation in Micro-end Milling of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2016, 86:2197-2217. [10]吴泽,邓建新,邢佑强,等.椭圆状微织构自润滑车刀切削性能试验[J].农业机械学报,2012,43(7):228-234. WU Ze,DENG Jianxin, XING Youqiang, et al. Cutting Performance of Self-lubricating Turning Tools with Elliptical Micro-textures[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(7):228-234. [11]杨奇彪,刘战强,曹成铭,等.高温合金高速切削锯齿形切屑应变与应变率研究[J].农业机械学报,2011,42(2):225-228. YANG Qibiao,LIU Zhanqiang, CAO Chengming, et al. Strain and Strain Rate of Serrated Chip Generated by Highspeed Cutting of Superalloys[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(2):225-228. [12]卢晓红,王文毅,王文韬,等.镍基高温合金Inconel718微铣削毛刺试验研究[J].组合机床与自动化加工技术,2015(1):1-3. LU Xiaohong,WANG Wenyi, WANG Wentao, et al. Experimental Study on Burrs in Micro-milling Nickel-base Superalloy Inconel718[J].Modular Machine Tool and Automatic Manufacturing Technology,2015(1):1-3. [13]陈文琳,刘宁,李伟,等. 金属切削过程的三维数值模拟[J].农业机械学报,2008,39(1):151-155. CHEN Wenlin,LIU Ning,LI Wei, et al. Three-dimensional Numerical Simulation of Metal Cutting Process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008,39(1):151-155. [14]朱云明,黄金桂,王贵成,等.车削毛刺形成有限元仿真研究[J].系统仿真学报,2015,27(5):1120-1126. ZHU Yunming,HUANG Jingui, WANG Guicheng, et.al. Study on Simulation of Turning Burr Formation Based on Finite Element Method[J].Journal of System Simulation,2015,27(5):1120-1126. [15]曲海军,王贵成,朱云明.车削进给方向毛刺的有限元分析[J].机械科学与技术,2011,30(9):1485-1489. QU Haijun, WANG Guicheng, ZHU Yunming. The Finite Element Analysis of Feed Direction Burr in Turning[J].Mechanical Science and Technology for Aerospace Engineering,2011,30(9):1485-1489. [16]孙秋莲,程祥,郑光明,等.微细铣削毛刺宽度仿真与试验研究[J].工具技术,2018,52(11):48-52. SUN Qiulian, CHENG Xiang, ZHENG Guangming, et al.Simulation and Experiment Investigation of Burr Width in Micro Milling[J]. Tool Engineering, 2018,52(11):48-52. [17]孙秋莲,程祥,杨先海,等.微细铣削力对毛刺尺寸的影响规律研究[J].工具技术,2018,52(5):42-46. SUN Qiulian, CHENG Xiang, YANG Xianhai, et al. Influence Regularity of Micro Milling Force on Burr Size[J]. Tool Engineering,2018,52(5):42-46. [18]孙秋莲,程祥,田业冰,等.微沟槽顶部毛刺宽度微细切削试验研究[J].组合机床与自动化加工技术,2018(8):53-56. SUN Qiulian, CHENG Xiang, TIAN Yebing, et al. The Burr Widths on the Top of Micro-slot Cutting Investigation in Micromilling[J]. Modular Machine Tool and Automatic Manufacturing Technology, 2018(8):53-56. [19]熊勇华,陈建,裴宏杰,等.微细切削毛刺的有限元仿真[J].机械强度,2014,36(3):378-382. XIONG Yonghua, CHEN Jian, PEI Hongjie, et al. Finite Element Simulation of Burr Formation in Micro Cutting[J].Journal of Mechanical Strength,2014,36(3):378-382. [20]庞迎春, 李迎. 微切削加工中材料微观结构效应的有限元分析[J]. 中国机械工程, 2011,22(19):105-110. PANG Yingchun, LI Ying. Finite Element Analysis of Material Microstructure Effect in Micro-cutting Processes[J].China Mechanical Engineering, 2011,22(19):105-110. [21]刘诗选,丁辉,程凯,等.无氧铜微铣削加工中尺寸效应对出口毛刺的影响研究[J].航空精密制造技术,2018,54(5):9-13. LIU Shixuan, DING Hui, CHENG Kai, et al. Research on Influence of Size Effect on Exit Burrs in Micro-milling Oxygen-free Copper [J]. Aviation Precision Manufacturing Technology, 2018,54(5):9-13. [22]王全意,丁辉,程凯,等.基于应变梯度理论的微切削毛刺仿真研究[J].工具技术,2019,53(4):12-15. WANG Quanyi, DING Hui, CHENG Kai, et al. Research on Micro-cutting Burr Based on Strain Gradient Theory[J]. Tool Engineering, 2019,53(4):12-15. [23]YADAV A K, KUMAR M, BAJPAI V, et al. FE Modeling of Burr Size in High-speed Micro-milling of Ti6Al4V[J]. Precision Engineering, 2017,49:287-292. [24]WAN Zhenping, LI Yaochao, TANG Hongliang, et al. Characteristics and Mechanism of Top Burr Formation in Slotting Microchannels Using Arrayed Thin Slotting Cutters[J]. Precision Engineering, 2014,38:28-35. [25]YANG Kai, BAI Qingshun, YU Fuli. Modelling and Experimental Analysis of the Mechanism of Micro-burr Formation and Micro-end-milling Process[J]. Nanotechnology and Precision Engineering,2010,8(1):75-83. [26]张志阳,袁振剑,王贵成,等.切削参数对微铣毛刺尺寸影响的试验研究[J].工具技术,2017,51(7):56-59. ZHANG Zhiyang, YUAN Zhenjian, WANG Guicheng, et al. Experimental Study on Parameters Governing Burr Dimension in Micro-milling[J]. Tool Engineering, 2017,51(7):56-59. [27]蔡明, 巩亚东, 于宁, 等. 单晶DD98微尺度铣削表面质量试验研究[J]. 中国机械工程, 2017,28(11):1261-1265. CAI Ming, GONG Yadong, YU Ning, et al. Experimental Study on Surface Quality of Single Crystal DD98 in Micro-milling Processes[J]. China Mechanical Engineering, 2017,28(11):1261-1265. [28]弯艳玲, 张学蕊, 于化东, 等. 高速微铣削铝合金表面粗糙度的多指标正交试验研究[J]. 中国机械工程,2013,24(24):3278-3288. WAN Yanling, ZHANG Xuerui, YU Huadong, et al. An Multi-index Orthogonal Test Study of Aluminum Alloy Surface Roughness Using High Speed Micro-milling Process[J]. China Mechanical Engineering, 2013, 24(24):3278-3288. [29]HUO D, CHENG K. Experimental Investigation on Micromilling of Oxygen-free, High-conductivity Copper Using Tungsten Carbide, Chemistry Vapour Deposition, and Single-crystal Diamond[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2010,224:995-1003. [30]HASSANPOUR H, SADEGHI M H, REZAEI H, et al. Experimental Study of Cutting Force, Microhardness, Surface Roughness, and Burr Size on Micromilling of Ti6Al4V in Minimum Quantity Lubrication[J]. Materials and Manufacturing Processes, 2016,31:1654-1662. [31]GULFAM U, SYED H, MUSHTAQ K, et al. Analysis of Burr Formation in Low Speed Micro-milling of Titanium Alloy(Ti-6Al-4V) [J]. Mechanical Sciences, 2018,9:231-243. [32]张霖, 赵东标, 张建明, 等. 微细端铣削工件表面粗糙度的研究[J]. 中国机械工程, 2008, 19(6):658-661. ZHANG Lin, ZHAO Dongbiao, ZHANG Jianming, et al. Study on Surface Roughness of Part in the Micro-end-milling Process[J]. China Mechanical Engineering, 2008, 19(6):658-661. [33]ZHONG Li, LI Liang, WU Xian, et al. Fabrication of PCD Micro Cutting Tool and Experimental Investigation on Machining of Copper Grating[J]. International Journal of Advanced Manufacturing Technology, 2017,88:2017-2027. [34]KHANGHAH S, BOOZAEPOOR M, LOTFI M, et al. Optimization of Micro-milling Parameters Regarding Burr Size Minimization via RSM and Simulated Annealing Algorithm[J]. Transactions of the Indian Institute of Metals, 2015,68:897-910. [35]PIQUARD R, ACONTO A, LAHEURTE P, et al. Micro-end Milling of NiTi Biomedical Alloys, Burr Formation and Phase Transformation[J].Precision Engineering, 2014,38:356-364. [36]ZHAO Kai, JIA Zhenyuan, LIU Wei, et al. Burr Control for Removal of Metal Coating from Plastics Substrate by Micro-milling[J]. Materials and Manufacturing Processes, 2016,31:641-647. [37]ZHAO Kai, JIA Zhenyuan, GAO Yuanyuan, et al. Experimental Investigation and Processing Optimization for Micro-milling of Copper Clad Polyimide[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2018,232(4):670-680. [38]BIERMANN D, HEILMANN M. Burr Minimization Strategies in Machining Operations[C]∥Proceedings of CIRP International Conference on Burrs—Analysis, Control and Removal. Kaiserlautern, 2010:13-20. [39]ARAMCHAROEN A, MATIVENGA P T. Size Effect and Tool Geometry Mcromilling of Tool Steel[J].Precision Engineering,2009,33(4):402-407. [40]赵孟, 何宁, 李亮. 基于钝圆尺寸效应的微细切削机理试验研究[J]. 中国机械工程, 2014,25(9):82-86. ZHAO Meng, HE Ning, LI Liang. An Experimental Study of Tool Cutting Radius Size Effect in Micro Cutting Processes[J]. China Mechanical Engineering, 2014,25(9):82-86. [41]LI P Y, OOSTERLING J A, HOOGSTRATE A M, et al. Design of Micro Square Endmills for Hard Milling Applications[J]. International Journal of Advanced Manufacturing Technology, 2011,57:859-870. [42]AZIZ M, OHNISHI O, ONIKURA H. Advanced Burr-free Hole Machining Using Newly Developed Micro Compound Tool[J]. International Journal of Precision Engineering & Manufacturing, 2012,13:947-953. [43]SAPTAJI K, SUBBIAH S, DHUPIA J S. Effect of Side Edge Angle and Effective Rake Angle on Top Burrs in Micro-milling [J]. Precision Engineering, 2012, 36(3):444-450. [44]WYEN C F, JAEGER D, WEGENER K. Influence of Cutting Edge Radius on Surface Integrity and Burr Formation in Milling Titanium[J]. International Journal of Advanced Manufacturing Technology, 2013,67:589-599. [45]张海军,黄燕华,袁光辉,等.ICF微靶零件微铣削毛刺实验研究[J].制造技术与机床,2012(7):135-137. ZHANG Haijun,HUANG Yanhua, YUAN Guanghui, et al. Experimental Study on Burrs in Micro Milling ICF Micro Targets[J].Manufacturing Technology and Machine Tool,2012(7):135-137. [46]VIPINDAS K, KURIACHEN B, MATHEW J. Investigations into the Effect of Process Parameters on Surface Roughness and Burr Formation during Micro End Milling of TI-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2016,100(58):1207-1222. [47]袁美霞,刘少楠,唐伯雁,等.微细铣削铝合金6061表面毛刺研究[J].表面技术,2017,46(8):268-273. YUAN Meixia, LIU Shaonan, TANG Boyan, et al. Investigation on Burrs on Micro Milled Aluminum Alloy 6061[J]. Surface Technology, 2017,46(8):268-273. [48]QU D, XUE J D, ZHANG P, et al. Applications of Integrated Auxiliary Methods Based on Deformation Analysis for Micro-milling Thin-walled Slot on Micro-neck[J]. International Journal of Advanced Manufacturing Technology, 2016,91:1-11. [49]PERCIN M, ASLANTAS K, I RFAN U, et al. Micro-drilling of Ti-6Al-4V Alloy:the Effects of Cooling/Lubricating[J]. Precision Engineering 2016,45:450-462. [50]NAM J S, LEE P H, SANG W L. Experimental Characterization of Micro-drilling Process Using Nanofluid Minimum Quantity Lubrication[J]. International Journal of Machine Tools and Manufacture, 2011,51:649-652. [51]NAM J, SANG W L. Machinability of Titanium Alloy(Ti-6Al-4V) in Environmentally-friendly Micro-drilling Process with Nanofluid Minimum Quantity Lubrication Using Nanodiamond Particles[J]. International Journal of Precision Engineering and Manufacturing—Green Technology, 2018, 5(1):29-35. [52]LI K M, CHOU S Y. Experimental Evaluation of Minimum Quantity Lubrication in Near Micro-milling[J]. Journal of Materials Processing Technology, 2010,210:2163-2170. [53]KO J H, SHAW K C, HAN K C, et al. Cusp Error Reduction under High Speed Micro/Meso-scale Milling with Ultrasonic Vibration Assistance[J]. International Journal of Precision Engineering and Manufacturing, 2011,12(1):15-20. [54]LI K M, WANG S L. Effect of Tool Wear in Ultrasonic Vibration-assisted Micro-milling[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2014,228:847-855. [55]韩光超,潘高峰,吴文,等.超声微铣削加工毛刺成形特性研究[J].北京理工大学学报,2018,38(9):888-892. HAN Guangchao, PAN Gaofeng, WU Wen, et al. Research on the Burr Forming Characteristics of Ultrasonic Assisted Micro-milling Process[J]. Transactions of Beijing Institute of Technology, 2018,38(9):888-892. [56]ZHENG Lu, CHEN Wanqun, HUO Dehong. Experimental Investigation on Burr Formation in Vibration-assisted Micro-milling of Ti-6Al-4V[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(12):4112-4119. [57]YU Huadong, CHEN Guangjun, XU Jinkai, et al. An Experimental Study of Ultrasonic Assisted Micro-holes Drilling[C]∥IEEE International Conference on Manipulation.Hangzhou, 2018:13-17. [58]DING H, CHEN S J, IBRAHIM R, et al. Investigation of the Size Effect on Burr Formation in Two-dimensional Vibration-assisted Micro End Milling[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2011,225:2032-2039. [59]XU S, SHIMADA K, MIZUYANI M, et al. Development of a Novel 2D Rotary Ultrasonic Texturing Technique for Fabricating Tailored Structures[J]. International Journal of Advanced Manufacturing Technology, 2017,89(1/4):1161-1172. [60]OKASHA M M, DRIVER N, MATIVENGA P, et al. Mechanical Microdrilling of Negative-tapered Laser-predrilled Holes:a New Approach for Burr Minimization[J]. International Journal of Advanced Manufacturing Technology, 2012,61:213-225. [61]XIA Hongjun, ZHAO Guolong, YAN Jihao, et al. Study on Laser-induced Oxidation Assisted Micro Milling of Ti6Al4V Alloy[J]. The International Journal of Advanced Manufacturing Technology,2019,103(1/4):1579-1591. [62]SHELTON J A, SHIN Y C. Comparative Evaluation of Laser-assisted Micro-milling for AISI 316, AISI 422, TI-6Al-4V and Inconel718 in a Side-cutting Configuration[J]. Journal of Micromechanics and Microengineering, 2010,20(7):075012. [63]崔西亮,田彪,王永国.碳纤维复合材料钻孔加工的缺陷分析[J].机电工程,2013,30(2):182-196. CUI Xiliang,TIAN Biao, WANG Yongguo. Carbon Fiber Reinforced Plastic Drilling Defect Analysis[J]. Journal of Mechanical and Electrical Engineering,2013,30(2):182-196. [64]刘刚,张恒,王亚飞,等.碳纤维增强复合材料螺旋铣孔切削力及加工质量研究[J].复合材料学报,2014,31(5):1292-1299. LIU Gang,ZHANG Heng, WANG Yafei,et al. Study on the Cutting Force and Machining Quality of Orbital Drilling for CFRP[J]. Acta Material Compositae Sinica, 2014,31(5):1292-1299. [65]李哲,姜兴刚,何凤涛,等.碳纤维复合材料旋转超声椭圆振动套磨制孔技术研究[C]∥第16届全国特种加工学术会议论文集(下).厦门, 2015:175-178. LI Zhe, JIANG Xinggang, HE Fengtao, et al. Study on Grinding Hole Technology of Rotating Ultrasonic Elliptical Vibration Cylinder of Carbon Fiber Composites [C]∥The 16th National Symposium on Special Processing Conference(Volume Two). Xiamen, 2015:175-178. [66]康永峰,王文理,王晓丽.碳纤维复合材料高速开槽铣削试验研究[J].航空制造技术,2010(22):82-85. KANG Yongfeng,WANG Wenli,Wang Xiaoli. Experimental Study on High-speed Groove-milling of CFRP [J]. Aeronautical Manufacturing Technology, 2010(22):82-85. [67]张加波,石文天,刘汉良,等.碳纤维复合材料超声振动加工[J].宇航材料工艺,2014(1):122-126. ZHANG Jiabo,SHI Wentian, LIU Hanliang,et al. Ultrasonic Vibration Cutting of CFRP[J]. Aerospace Materials and Technology, 2014(1):122-126. [68]WEN Q, GUO D M, GAO H, et al. Burr and Spalling Damages Formation Mechanism of Carbon/epoxy Composites by Scratching Experiment[J].Acta Materiae Compositae Sinica,2014,31(1):9-17. [69]刘浩文,程寓,苏飞.碳纤维增强复合材料成型槽铣削的试验研究[J].机床与液压,2014,42(19):38-41. LIU Haowen,CHENG Yu,SU Fei. Experimental Study on Milling Forming Slot of CFRP[J]. Machine Tool and Hydraulics,2014,42(19):38-41. [70]石文天,刘玉德,张永安,等.芳纶纤维复合材料切削加工研究进展[J].表面技术,2016,45(1):28-33. SHI Wentian, LIU Yude, ZHANG Yongan, et al. Research Progress on the Cutting Process of Aramid Fiber Composites[J].Surface Technology,2016,45(1):28-33. [71]GIASIN K, AYVAR S. An Investigation of Burrs, Chip Formation, Hole Size, Circularity and Delamination during Drilling Operation of GLARE Using ANOVA[J]. Composite Structures, 2017,159:745-760. [72]黄义俊,彭力明.精密机械零件去毛刺与抛光加工的新工艺应用[J].新技术新工艺,2009(5):61-63. HUANG Yijun,PENG Liming. The Application of New Technology on Deburring and Polishing Machining for Precise Mechanical Parts[J]. New Technology & New Process, 2009(5):61-63. [73]JIN D H, KWAK J S. A Study on Magnetic Abrasive Deburring of Dual Micro Pattern[J]. Journal of Mechanical Science and Technology, 2016,30(12):5667-5672. [74]KIM T W, KWAK J S. A Study on Deburring of Magnesium Alloy Plate by Magnetic Abrasive Polishing[J]. International Journal of Precision Engineering and Manufacturing,2010,11(2):189-194. [75]梁杰.机器人高压水射流去毛刺系统的开发[J].机电工程技术, 2012,41(7):28-30. LIANG Jie. The Development of Robotic High Pressure Water Deburring System[J]. Mechanical and Electrical Engineering Technology,2012,41(7):20-30. [76]周艳辉, 刘秋平, 康春兰. 高压水喷射去毛刺技术的应用研究[J]. 2011,39(2):87-89. ZHOU Yanhui, LIU Qiuping, KANG Chunlan. Application Research of High-pressure Water Jet Deburring Technic[J]. 2011,39(2):87-89. [77]K E纽曼.去除毛刺方法:中国, 97196241.3.[P].1999-08-04. NEWMAN K E. Method of Removing the Burr:China,97196241.3.[P].1999-08-04. [78]马云青.流体喷射去除金属件、塑料制品毛刺及油污的方法和装置:中国,200510123556.0[P].2006-12-20. MA Yunqing. Method and Apparatus for Removing the Metal Parts, Plastic Burrs and Oil From the Fluid Jet:China, 200510123556.0[P].2006-12-20. [79]陈玉峰.聚能式超声波研磨去毛刺装置:中国:200720042026.8[P].2008-09-03. CHEN Yufeng. Grinding Deburring Device of Energy Gathering Type Ultrasonic: China, 200720042026.8[P].2008-09-03. |
[1] | 李小睿, 赵威, 李浩, 史卫奇, 何宁. 高压低温CO2射流冷却条件下高速车削淬硬轴承钢的试验研究[J]. 中国机械工程, 2023, 34(24): 2975-2985. |
[2] | 张其聪, 姜晨, 叶卉, 申岭鑫, 矫梦蝶. 动压辅助非牛顿流体抛光工具设计与工艺研究[J]. 中国机械工程, 2023, 34(23): 2805-2811,2823. |
[3] | 杨宇召, 杨晨, 徐诚, 樊黎霞. 弹线膛一体径向精锻成形身管内膛轴向褶皱缺陷的形成机理[J]. 中国机械工程, 2023, 34(16): 1991-2000,2008. |
[4] | 李佳璇, 李论, 周波, 赵吉宾, 朱光, 王正佳, . 基于Preston-PSO算法的多方向机器人磨抛轨迹生成方法[J]. 中国机械工程, 2023, 34(14): 1729-1740. |
[5] | 李鸿宇, 黄向明, 明阳, 李希扬, 曾清, 周东栋. 磁场辅助剪切增稠流体抛光硬质合金刀片的仿真与实验研究[J]. 中国机械工程, 2023, 34(06): 650-659. |
[6] | 王紫光, 刘金鑫, 尹剑, 周平, 沙智华, 康仁科. 细粒度金刚石砂轮超精密磨削硅片的表面质量[J]. 中国机械工程, 2023, 34(02): 245-251. |
[7] | 倪敬, 孙静波, 何利华, 崔智, 薛飞. PTFE材料正交切削切屑成形特性研究[J]. 中国机械工程, 2022, 33(22): 2733-2740. |
[8] | 李国超, 柏小祥, 王黎明, 李昌明, 李友生. 多轴联动工具磨削软件关键技术与发展趋势[J]. 中国机械工程, 2022, 33(08): 943-951. |
[9] | 刘枭, 邓文君, 陈海涛, 张保玉. 低温切削7075铝合金鳞刺形成规律及抑制措施[J]. 中国机械工程, 2022, 33(03): 261-269. |
[10] | 李俊烨, 朱志宝, 张心明, 石广丰, 赵伟宏, 苏宁宁. 异形截面孔磨粒流精密加工质量分析[J]. 中国机械工程, 2021, 32(17): 2063-2073. |
[11] | 吴柯, 陆新明, MEHMOOD Awais, 周立波, 袁巨龙. 基于固结磨粒的单晶蓝宝石自旋转磨削加工方法[J]. 中国机械工程, 2021, 32(16): 2002-2007,2015. |
[12] | 李强, 郭辰光, 赵丽娟, 冷岳峰, 岳海涛. 具有晶体学各向异性特征的DD5镍基单晶高温合金铣削力建模[J]. 中国机械工程, 2021, 32(06): 734-740. |
[13] | 原路生, 赵波, 王毅, 赵重阳. 椭圆振动辅助车削7075铝合金表面微织构及其特性[J]. 中国机械工程, 2020, 31(15): 1831-1838. |
[14] | 李俊烨1;卢慧1;苏宁宁1;张心明1;张宏伟2. 大涡模拟Smagorinsky模型用于磨粒流精密加工喷嘴的质量控制研究[J]. 中国机械工程, 2020, 31(10): 1169-1174. |
[15] | 郗枫飞;曾晰;计时鸣;陈国达. 光催化条件下钴基合金材料去除方法[J]. 中国机械工程, 2020, 31(06): 662-669. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||