[1]宿友亮, 张南, 刘墨迪, 等. FRP制件修复用在位加工铣床的床身优化[J]. 机械科学与技术, 2020, 39(4):648-656.
SU Youliang, ZHANG Nan, LIU Modi, et al. Bed Optimization of In-situ Machining Milling Machine for FRP Parts Repair[J]. Mechanical Science and Technology, 2020, 39(4):648-656.
[2]毛胜辉, 索小娟. 机械加工表面质量对零件使用性能的影响分析[J]. 机械管理开发, 2017, 32(3):29-30.
MAO Shenghui, SUO Xiaojuan. Analysis of the Influence of Machining Surface Quality on the Performance of Parts[J]. Mechanical Management Development, 2017, 32(3):29-30.
[3]阮晓光, 麻诗韵, 李玲, 等. 微动接触中分形粗糙表面的接触应力研究[J]. 机械设计与制造, 2021(5):139-143.
RUAN Xiaoguang, MA Shiyun, LI Ling, et al. Research on Contact Stress of Fractal Rough Surface in Fretting Contact[J]. Mechanical Design and Manufacturing, 2021(5):139-143.
[4]LIN W, XU P, LI B, et al. Path Planning of Mechanical Polishing Process for Freeform Surface with a Small Polishing Tool[J]. Robotics and Biomimetics, 2014, 24(1):1-15.
[5]SARKAR S, DEY P P. Tool Path Generation for Algebraically Parameterized Surface[J]. Journal of Intelligent Manufacturing, 2015, 26(2):415-421.
[6]徐金亭, 牛金波, 陈满森, 等. 精密复杂曲面零件多轴数控加工技术研究进展[J]. 航空学报, 2021, 42(10):524867.
XU Jinting, NIU Jinbo, CHEN Mansen, et al. Research Progress in Multi-axis CNC Machining of Precision Complex Curved Parts[J]. Acta Aeronauticaet Astronautica Sinica, 2021, 42(10):524867.
[7]WANG C, YANG W, YE S, et al. Restraint of Tool Path Ripple Based on the Optimization of Tool Step Size for Sub-aperture Deterministic Polishing[J]. International Journal of Advanced Manufacturing Technology, 2014, 75(9/12):1431-1438.
[8]TAM H Y, CHENG H, DONG Z. Peano-like Paths for Subaperture Polishing of Optical Aspherical Surfaces[J]. Applied Optics, 2013, 52(15):3624-3636.
[9]SUN Y, FENG D, GUO D. An Adaptive Uniform Toolpath Generation Method for the Automatic Polishing of Complex Surfaces with Adjustable Density[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(9/12):1673-1683.
[10]TAM H Y, CHENG H. An Investigation of the Effects of the Tool Path on the Removal of Material in Polishing[J]. Journal of Materials Processing Technology, 2010, 210(5):807-818.
[11]WANG C, WANG Z, XU Q. Unicursal Random Maze Tool Path for Computer-controlled Optical Surfacing[J]. Applied Optics, 2015, 54(34):10128.
[12]TAKIZAWA K, BEAUCAMP A. Comparison of Tool Feed Influence in CNC Polishing between a Novel Circular-random Path and Other Pseudo-random Paths[J]. Optics Express, 2017, 25(19):22411.
[13]陈锐奇,周雪峰,王清辉,等. 曲面抛光的材料去除模型与摆线轨迹控制[J]. 华南理工大学学报(自然科学版), 2018, 46(3):8-15.
CHEN Ruiqi, ZHOU Xuefeng, WANG Qinghui, et al. Material Removal Model and Cycloid Trajectory Control for Surface Polishing[J]. Journal of South China University of Technology(Natural Science Edition), 2018, 46(3):8-15.
[14]XU C Y, LI J R, LIANG Y J, et al. Trochoidal Toolpath for the Pad-polishing of Freeform Surfaces with Global Control of Material Removal Distribution[J]. Journal of Manufacturing Systems, 2019, 51:1-16.
[15]LYU Y, PENG Z, QU C, et al. An Adaptive Trajectory Planning Algorithm for Robotic Belt Grinding of Blade Leading and Trailing Edges Based on Material Removal Profile Model[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66:101987.
[16]谢海龙, 许晨旸, 王清辉, 等. 曲面零件机器人抛光轨迹规划与工艺仿真[J]. 自动化与信息工程, 2019, 40(6):1-7.
XIE Hailong, XU Chenyang, WANG Qinghui, et al. Robot Polishing Trajectory Planning and Process Simulation of Curved Surface Parts[J]. Automation and Information Engineering, 2019, 40(6):1-7.
[17]罗来臻, 赵欢, 王辉, 等. 复杂曲面机器人磨抛位姿优化与刀路规划[J]. 机械工程学报, 2022, 58(3):284-294.
LUO Laizhen, ZHAO Huan, WANG Hui, et al. Robot Grinding and Polishing Pose Optimization and Tool Path Planning for Complex Curved Surfaces[J]. Chinese Journal of Mechanical Engineering, 2022, 58(3):284-294.
[18]冯茜,李擎,全威,等.多目标粒子群优化算法研究综述[J].工程科学学报,2021,43(6):745-753.
FENG Qian, LI Qing, QUAN Wei, et al. Overview of Multiobjective Particle Swarm Optimization Algorithm[J]. Chinese Journal of Engineering, 2021, 43(6):745-753.
[19]王生亮, 刘根友. 一种非线性动态自适应惯性权重PSO算法[J]. 计算机仿真, 2021, 38(4):249-253.
WANG Shengliang, LIU Genyou. A Nonlinear Dynamic Adaptive Inertia Weight PSO Algorithm[J]. Computer Simulation, 2021, 38(4):249-253.
|