[1]孙富建, 陈金龙, 韩涛, 等. 淬硬轴承钢硬车削和磨削辅助加工技术研究[J]. 轴承, 2022, 6(511):13-17.
SUN Fujian, CHEN Jinlong, HAN Tao, et al. Research on Hard Turning and Grinding Assisted Technologies for Hardened Bearing Steel[J]. Bearing, 2022, 6(511):13-17.
[2]LAN J, FENG S, HUA L. The Residual Stress of the Cold Rolled Bearing Race[J]. Procedia Engineering, 2017, 207:1254-1259.
[3]ETINDA H A, IEK A, UAK N. The Effects of Cryomql Conditions on Tool Wear and Surface Integrity in Hard Turning of AISI 52100 Bearing Steel[J]. Journal of Manufacturing Processes, 2020, 56:463-473.
[4]FAN A, EH A, RD A, et al. Machinability and Surface Integrity Characterization in Hard Turning of AISI 4320 Bearing Steel Using Different CBN Inserts[J]. Procedia Manufacturing, 2020, 48:598-605.
[5]刘露冬漫. 薄壁轴承套圈硬切削加工变形与表面完整性的研究[D]. 南京:南京航空航天大学, 2018.
LIU Ludongman. Research on the Deviation and Surface Integrity of Thin-wall Bearing Rings in Hard Turning[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018.
[6]JOUINI N.; REVEL P, THOQUENNE G. Investigation of Surface Integrity Induced by Various Finishing Processes of AISI 52100 Bearing Rings[J]. Materials, 2022, 15(10):3710.
[7]何宁. 高速切削技术[J]. 工具技术, 2003, 37(11):8-11.
HE Ning. High Speed Cutting Technology[J]. Tool Engineering, 2003, 37(11):8-11.
[8]GORDON S, PHELAN P, LAHIFF C. The Effect of High Speed Machining on the Crater Wear Behaviour of PCBN Tools in Hard Turning[J]. Procedia Manufacturing, 2019, 38:1833-1848.
[9]CAPPELLINI C, ATTANASIO A, ROTELLA G. Formation of White and Dark Layers in Hard Cutting:Influence of Tool Wear[J]. International Journal of Material Forming, 2010, 3:455-458.
[10]吴明阳, 赵旭, 陈勇, 等. 高压冷却下PCBN刀具切削高温合金切屑卷曲折断机理及试验研究[J]. 机械工程学报, 2017, 53(9):187-192.
WU Mingyang, ZHAO Xu, CHEN Yong, et al. Research on Mechanism and Experimental of Chip Breaking during High Pressure Cooling Turning of Superalloys with PCBN Tool[J]. Journal of Mechanical Engineering, 2017, 53(9):187-192.
[11]赵旭. 高压冷却下PCBN刀具切削镍基高温合金切屑形成与折断机理[D]. 哈尔滨:哈尔滨理工大学, 2017.
ZHAO Xu. Mechanism of Chip Formation and Fracture of PCBN Cutting High Temperature Alloy under High-pressure Cooling[D]. Harbin:Harbin University of Science and Technology. 2015.
[12]JAWAHIR I S, ATTIA H, BIERMANN D, et al. Cryogenic Manufacturing Processes[J]. CIRP Annals:Manufacturing Technology, 2016. 65(2):713-736.
[13]肖虎, 李亮. TC4钛合金在低温CO2冷却下的切削性能[J]. 中国机械工程, 2017, 28(8):883-887.
XIAO Hu, LI Liang. High Speed Cutting of TC4 Titanium Alloy under Cryogenic CO2 Cooling Conditions[J]. China Mechanical Engineering, 2017, 28(8):883-887.
[14]赵香港, 郝秀清, 章梓航, 等. 低温CO2辅助PCD刀具硬车削轴承套圈的装置及试验研究[J]. 表面技术, 2023, 52(2):307-316.
ZHAO Xianggang, HAO Xiuqing, ZHANG Zihang, et al. Low Temperature CO2 Assisted PCD Tool Hard Turning Bearing Ring Device and Experimental Research[J]. Surface Technology, 2023, 52(2):307-316.
[15]吴茂宁, 赵威, 何宁. 金刚石刀具低温硬车削轴承钢的表面残余应力研究[J]. 机械制造与自动化, 2021, 50(3):10-12.
WU Maoning, ZHAO Wei, HE Ning. Research on Surface Residual Stress of Bearing Steel GCr15 in Cryogenic Hard Turning with CVD Diamond Cutting Tools[J]. Machine Building & Automation, 2021, 50(3):10-12.
[16]ANKENER W, UEBEL J, BASTEN S, et al. Influence of Different Cooling Strategies during Hard Turning of AISI 52100—Part Ⅱ:Characterization of the Surface and Near Surface Microstructure Morphology[J]. Procedia CIRP, 2020, 87:119-124.
[17]URRESTI I, LIANOS I, ZURBITU J, et al. Tool Wear Modelling of Cryogenic-assisted Hard Turning of AISI 52100[J]. Procedia CIRP, 2021, 102:494-499.
[18]ABBAS A T, ANWAR S, HEGAB H, et al. Comparative Evaluation of Surface Quality, Tool Wear, and Specific Cutting Energy for Wiper and Conventional Carbide Inserts in Hard Turning of AISI 4340 Alloy Steel[J]. Materials, 2020, 13(22):5233.
[19]单远. 薄壁轴承套圈精密硬车削研究[D]. 南京:南京航空航天大学, 2019.
SHAN Yuan. Research on the Precision Hard Turning of Thin-wall Bearing Rings[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019.
[20]李录彬. 高压冷却下镍基高温合金GH4169切削特性及冷却润滑机理研究[D]. 哈尔滨:哈尔滨理工大学, 2019.
LI Lubin. Research on Cutting Characteristics and Lubrication-cooling Mechanism of Ni-based Superalloy GH4169 under High Pressure Cooling[D]. Harbin:Harbin University of Science and Techno-logy, 2019.
[21]STERLE L, KRAJNIK P, PUSAVEC F. The Effects of Liquid-CO2 Cooling, MQL and Cutting Parameters on Drilling Performance[J]. CIRP Annals:Manufacturing Technology, 2021, 70(1):79-82.
[22]刘明政, 李长河, 曹华军, 等. 低温微量润滑加工技术研究进展与应用[J]. 中国机械工程, 2022, 33(5):529-550.
LIU Mingzheng, LI Changhe, CAO Huajun, et al. Research Progresses and Applications of CMQL Machining Technology[J]. China Mechanical Engineering, 2022, 33(5):529-550.
[23]吴世雄, 张文锋, 刘广东, 等. 低温液氮冷却下高速切削淬硬钢的切屑形成及刀具磨损[J]. 中国机械工程, 2022, 33(5):551-559.
WU Shixiong, ZHANG Wenfeng, LIU Guangdong, et al. Chip Formation and Tool Wear in High-speed Cutting of Hardened Steels under Cryogenic Liquid Nitrogen Cooling[J]. China Mechanical Engineering, 2022, 33(5):551-559.
[24]邓福铭, 邓雯丽, 杨雪峰, 等. PCBN刀具高速切削淬硬轴承钢的磨损机理研究[J]. 金刚石与磨料磨具工程, 2016, 36(5):50-54.
DENG Fuming, DENG Wenli, YANG Xuefeng, et al. Wear Mechanism of The PCBN Cutting Tools in High Speed Cutting of Hardened Bearing Steel[J]. Diamond & Abrasives Engineering, 2016, 36(5):50-54.
[25]BERTOLINI R, BEDEKAR V, GHIOTTI A,et al. Surface Integrity and Corrosion Performances of Hardened Bearing Steel after Hard Turning[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(7/8):1983-1995.
[26]UMBRELLO D, MICARI F, JAWAHIR I S. The Effects of Cryogenic Cooling on Surface Integrity in Hard Machining:a Comparison with Dry Machining[J]. CIRP Annals:Manufacturing Technology, 2012 61:103-106.
|