China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2960-2967.DOI: 10.3969/j.issn.1004-132X.2025.12.019

Previous Articles    

High-precision Computation of Inverse Kinematics for Redundant Robots Based on Flow Model

Feng YIN1(), Xin HUANG1, Jiayi ZHOU2   

  1. 1.School of Automation and Electronic Information,Xiangtan University,Xiangtan,Hunan,411105
    2.School of Mechanical and Electrical Engineering,Hunan Agricultural University,Changsha,410128
  • Received:2025-01-17 Online:2025-12-25 Published:2025-12-31
  • Contact: Feng YIN

基于流模型的冗余机器人逆运动学解高精度计算

印峰1(), 黄欣1, 周佳义2   

  1. 1.湘潭大学自动化与电子信息学院, 湘潭, 411105
    2.湖南农业大学机电工程学院, 长沙, 410128
  • 通讯作者: 印峰
  • 作者简介:印峰*(通信作者),男,1983年生,博士、副教授。研究方向为机器人技术。E-mail:yinfeng83@126.com
  • 基金资助:
    湖南省教育厅优秀青年项目(23B0172)

Abstract:

To improve the accuracy of deep neural networks in solving inverse kinematics for redundant robots and reduce the probability of self-collision solutions, a solution method was proposed based on the conditional normalizing flows model. An improved L-M algorithm was employed to perform secondary optimization on the initial solutions generated by the conditional normalizing flows model to enhance computational accuracy. Furthermore, by training a multi-layer perceptron with extracted self-collision prior knowledge, a self-collision solution detector was constructed to filter out self-collision solutions. The results demonstrate that the calculated positional and angular errors remain below 0.01 mm and 0.1° respectively, the self-collision rate is maintained under 0.1%, and the single computation time is consistently within 10 ms. This method enables efficient and stable solutions for inverse kinematics problems in redundant robots.

Key words: inverse kinematics, redundant robot, conditional normalizing flow, Levenberg-Marquardt(L-M) algorithm

摘要:

为提高深度神经网络计算冗余机器人逆运动学解的精度,并降低自碰撞解的出现概率,提出了一种基于条件标准化流模型的求解方法。采用改进列文伯格-马夸尔特(L-M)算法对条件标准化流模型生成的初始解进行二次优化以提高计算精度。通过提取自碰撞先验信息训练多层感知机,构造自碰撞解检测器以剔除自碰撞解。结果表明,求解的位置和角度误差分别小于0.01 mm和0.1°,自碰撞率低于0.1%,并且单次计算的时间稳定在10 ms以内。该方法可用于对冗余机器人逆运动学问题的高效稳定求解。

关键词: 逆运动学, 冗余机器人, 条件标准化流, 列文伯格-马夸尔特算法

CLC Number: